Supported Models#
The following tables detail the models supported by LMDeploy’s TurboMind engine and PyTorch engine across different platforms.
TurboMind on CUDA Platform#
Model |
Size |
Type |
FP16/BF16 |
KV INT8 |
KV INT4 |
W4A16 |
---|---|---|---|---|---|---|
Llama |
7B - 65B |
LLM |
Yes |
Yes |
Yes |
Yes |
Llama2 |
7B - 70B |
LLM |
Yes |
Yes |
Yes |
Yes |
Llama3 |
8B, 70B |
LLM |
Yes |
Yes |
Yes |
Yes |
Llama3.1 |
8B, 70B |
LLM |
Yes |
Yes |
Yes |
Yes |
Llama3.2[2] |
1B, 3B |
LLM |
Yes |
Yes* |
Yes* |
Yes |
InternLM |
7B - 20B |
LLM |
Yes |
Yes |
Yes |
Yes |
InternLM2 |
7B - 20B |
LLM |
Yes |
Yes |
Yes |
Yes |
InternLM2.5 |
7B |
LLM |
Yes |
Yes |
Yes |
Yes |
InternLM-XComposer2 |
7B, 4khd-7B |
MLLM |
Yes |
Yes |
Yes |
Yes |
InternLM-XComposer2.5 |
7B |
MLLM |
Yes |
Yes |
Yes |
Yes |
Qwen |
1.8B - 72B |
LLM |
Yes |
Yes |
Yes |
Yes |
Qwen1.5[1] |
1.8B - 110B |
LLM |
Yes |
Yes |
Yes |
Yes |
Qwen2[2] |
0.5B - 72B |
LLM |
Yes |
Yes* |
Yes* |
Yes |
Qwen2-MoE |
57BA14B |
LLM |
Yes |
Yes |
Yes |
Yes |
Qwen2.5[2] |
0.5B - 72B |
LLM |
Yes |
Yes* |
Yes* |
Yes |
Mistral[1] |
7B |
LLM |
Yes |
Yes |
Yes |
No |
Mixtral |
8x7B, 8x22B |
LLM |
Yes |
Yes |
Yes |
Yes |
DeepSeek-V2 |
16B, 236B |
LLM |
Yes |
Yes |
Yes |
No |
DeepSeek-V2.5 |
236B |
LLM |
Yes |
Yes |
Yes |
No |
Qwen-VL |
7B |
MLLM |
Yes |
Yes |
Yes |
Yes |
DeepSeek-VL |
7B |
MLLM |
Yes |
Yes |
Yes |
Yes |
Baichuan |
7B |
LLM |
Yes |
Yes |
Yes |
Yes |
Baichuan2 |
7B |
LLM |
Yes |
Yes |
Yes |
Yes |
Code Llama |
7B - 34B |
LLM |
Yes |
Yes |
Yes |
No |
YI |
6B - 34B |
LLM |
Yes |
Yes |
Yes |
Yes |
LLaVA(1.5,1.6) |
7B - 34B |
MLLM |
Yes |
Yes |
Yes |
Yes |
InternVL |
v1.1 - v1.5 |
MLLM |
Yes |
Yes |
Yes |
Yes |
InternVL2[2] |
1 - 2B, 8B - 76B |
MLLM |
Yes |
Yes* |
Yes* |
Yes |
InternVL2.5(MPO)[2] |
1 - 78B |
MLLM |
Yes |
Yes* |
Yes* |
Yes |
ChemVLM |
8B - 26B |
MLLM |
Yes |
Yes |
Yes |
Yes |
MiniCPM-Llama3-V-2_5 |
- |
MLLM |
Yes |
Yes |
Yes |
Yes |
MiniCPM-V-2_6 |
- |
MLLM |
Yes |
Yes |
Yes |
Yes |
MiniGeminiLlama |
7B |
MLLM |
Yes |
- |
- |
Yes |
GLM4 |
9B |
LLM |
Yes |
Yes |
Yes |
Yes |
CodeGeeX4 |
9B |
LLM |
Yes |
Yes |
Yes |
- |
Molmo |
7B-D,72B |
MLLM |
Yes |
Yes |
Yes |
No |
“-” means not verified yet.
Note
[1] The TurboMind engine doesn’t support window attention. Therefore, for models that have applied window attention and have the corresponding switch “use_sliding_window” enabled, such as Mistral, Qwen1.5 and etc., please choose the PyTorch engine for inference.
[2] When the head_dim of a model is not 128, such as llama3.2-1B, qwen2-0.5B and internvl2-1B, turbomind doesn’t support its kv cache 4/8 bit quantization and inference
PyTorchEngine on CUDA Platform#
Model |
Size |
Type |
FP16/BF16 |
KV INT8 |
KV INT4 |
W8A8 |
W4A16 |
---|---|---|---|---|---|---|---|
Llama |
7B - 65B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Llama2 |
7B - 70B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Llama3 |
8B, 70B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Llama3.1 |
8B, 70B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Llama3.2 |
1B, 3B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Llama3.2-VL |
11B, 90B |
MLLM |
Yes |
Yes |
Yes |
- |
- |
InternLM |
7B - 20B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
InternLM2 |
7B - 20B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
InternLM2.5 |
7B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Baichuan2 |
7B |
LLM |
Yes |
Yes |
Yes |
Yes |
No |
Baichuan2 |
13B |
LLM |
Yes |
Yes |
Yes |
No |
No |
ChatGLM2 |
6B |
LLM |
Yes |
Yes |
Yes |
No |
No |
Falcon |
7B - 180B |
LLM |
Yes |
Yes |
Yes |
No |
No |
YI |
6B - 34B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Mistral |
7B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Mixtral |
8x7B, 8x22B |
LLM |
Yes |
Yes |
Yes |
No |
No |
QWen |
1.8B - 72B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
QWen1.5 |
0.5B - 110B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
QWen1.5-MoE |
A2.7B |
LLM |
Yes |
Yes |
Yes |
No |
No |
QWen2 |
0.5B - 72B |
LLM |
Yes |
Yes |
No |
Yes |
Yes |
Qwen2.5 |
0.5B - 72B |
LLM |
Yes |
Yes |
No |
Yes |
Yes |
QWen2-VL |
2B, 7B |
MLLM |
Yes |
Yes |
No |
No |
Yes |
DeepSeek-MoE |
16B |
LLM |
Yes |
No |
No |
No |
No |
DeepSeek-V2 |
16B, 236B |
LLM |
Yes |
No |
No |
No |
No |
DeepSeek-V2.5 |
236B |
LLM |
Yes |
No |
No |
No |
No |
MiniCPM3 |
4B |
LLM |
Yes |
Yes |
Yes |
No |
No |
MiniCPM-V-2_6 |
8B |
LLM |
Yes |
No |
No |
No |
Yes |
Gemma |
2B-7B |
LLM |
Yes |
Yes |
Yes |
No |
No |
Dbrx |
132B |
LLM |
Yes |
Yes |
Yes |
No |
No |
StarCoder2 |
3B-15B |
LLM |
Yes |
Yes |
Yes |
No |
No |
Phi-3-mini |
3.8B |
LLM |
Yes |
Yes |
Yes |
Yes |
Yes |
Phi-3-vision |
4.2B |
MLLM |
Yes |
Yes |
Yes |
- |
- |
CogVLM-Chat |
17B |
MLLM |
Yes |
Yes |
Yes |
- |
- |
CogVLM2-Chat |
19B |
MLLM |
Yes |
Yes |
Yes |
- |
- |
LLaVA(1.5,1.6)[2] |
7B-34B |
MLLM |
No |
No |
No |
No |
No |
InternVL(v1.5) |
2B-26B |
MLLM |
Yes |
Yes |
Yes |
No |
Yes |
InternVL2 |
1B-76B |
MLLM |
Yes |
Yes |
Yes |
- |
- |
InternVL2.5(MPO) |
1B-78B |
MLLM |
Yes |
Yes |
Yes |
- |
- |
Mono-InternVL[1] |
2B |
MLLM |
Yes |
Yes |
Yes |
- |
- |
ChemVLM |
8B-26B |
MLLM |
Yes |
Yes |
No |
- |
- |
Gemma2 |
9B-27B |
LLM |
Yes |
Yes |
Yes |
- |
- |
GLM4 |
9B |
LLM |
Yes |
Yes |
Yes |
No |
No |
GLM-4V |
9B |
MLLM |
Yes |
Yes |
Yes |
No |
Yes |
CodeGeeX4 |
9B |
LLM |
Yes |
Yes |
Yes |
- |
- |
Phi-3.5-mini |
3.8B |
LLM |
Yes |
Yes |
No |
- |
- |
Phi-3.5-MoE |
16x3.8B |
LLM |
Yes |
Yes |
No |
- |
- |
Phi-3.5-vision |
4.2B |
MLLM |
Yes |
Yes |
No |
- |
- |
Note
[1] Currently Mono-InternVL does not support FP16 due to numerical instability. Please use BF16 instead.
[2] PyTorch engine removes the support of original llava models after v0.6.4. Please use their corresponding transformers models instead, which can be found in https://huggingface.co/llava-hf
PyTorchEngine on Huawei Ascend Platform#
Model |
Size |
Type |
FP16/BF16(eager) |
FP16/BF16(graph) |
W4A16(eager) |
---|---|---|---|---|---|
Llama2 |
7B - 70B |
LLM |
Yes |
Yes |
Yes |
Llama3 |
8B |
LLM |
Yes |
Yes |
Yes |
Llama3.1 |
8B |
LLM |
Yes |
Yes |
Yes |
InternLM2 |
7B - 20B |
LLM |
Yes |
Yes |
Yes |
InternLM2.5 |
7B - 20B |
LLM |
Yes |
Yes |
Yes |
Mixtral |
8x7B |
LLM |
Yes |
Yes |
No |
QWen1.5-MoE |
A2.7B |
LLM |
Yes |
- |
No |
QWen2(.5) |
7B |
LLM |
Yes |
Yes |
No |
QWen2-MoE |
A14.57B |
LLM |
Yes |
- |
No |
InternVL(v1.5) |
2B-26B |
MLLM |
Yes |
- |
Yes |
InternVL2 |
1B-40B |
MLLM |
Yes |
Yes |
Yes |
CogVLM2-chat |
19B |
MLLM |
Yes |
No |
- |
GLM4V |
9B |
MLLM |
Yes |
No |
- |