
lmdeploy Documentation
Release 0.4.1

LMDeploy Contributors

May 17, 2024

GET STARTED

1 Get Started 1
1.1 Installation . 1
1.2 Offline batch inference . 1
1.3 Serving . 2
1.4 Quantization . 2
1.5 Useful Tools . 2

2 Build from source 3
2.1 Build in Docker (recommended) . 3
2.2 Build in localhost (optional) . 4

3 Profile Token Latency and Throughput 5
3.1 Metrics . 5
3.2 Profile . 5

4 Profile Request Throughput 7
4.1 Metrics . 7
4.2 Profile . 7

5 Profile API Server 9
5.1 Metrics . 9
5.2 Profile . 9

6 Profile Triton Inference Server 11
6.1 Metrics . 11
6.2 Profile . 11

7 Evaluate LLMs with OpenCompass 13
7.1 Setup . 13
7.2 Prepare Evaluation Config . 14
7.3 Execute Evaluation Task . 16

8 Supported Models 17
8.1 Models supported by TurboMind . 17
8.2 Models supported by PyTorch . 17

9 LLM Offline Inference Pipeline 19
9.1 Usage . 19
9.2 FAQs . 22

10 VLM Offline Inference Pipeline 23

i

10.1 A ‘Hello, world’ example . 23
10.2 Multi-images inference . 25
10.3 Batch prompts inference . 26
10.4 Multi-turn conversation . 26

11 Serving LLM with OpenAI Compatible Server 27
11.1 Launch Service . 27
11.2 RESTful API . 28
11.3 Integrate with WebUI . 32
11.4 FAQ . 33

12 Serving VLM with OpenAI Compatible Server 35
12.1 Launch Service . 35
12.2 RESTful API . 36

13 Serving with Gradio 41
13.1 Create a huggingface demo . 41
13.2 FAQs . 42

14 Request Distributor Server 43
14.1 Startup . 43
14.2 API . 43
14.3 Dispatch Strategy . 44

15 W4A16 Quantization 45
15.1 Quantization . 45
15.2 Evaluation . 46
15.3 Inference . 46
15.4 Service . 47
15.5 Performance . 47

16 Key-Value(KV) Cache Quantization 49
16.1 Usage . 50
16.2 Evaluation . 50
16.3 Performance . 50

17 W8A8 LLM Model Deployment 51
17.1 8-bit Weight Model Inference . 51
17.2 Launching gradio service . 51
17.3 Inference Speed . 52
17.4 8bit Weight Quantization . 52

18 Architecture of TurboMind 53
18.1 High level overview of TurboMind . 53
18.2 Persistent Batch . 53
18.3 KV Cache Manager . 54
18.4 LLaMa implementation . 54
18.5 API . 55
18.6 Difference between FasterTransformer and TurboMind . 55
18.7 FAQ . 55

19 Architecture of lmdeploy.pytorch 57
19.1 Design . 57
19.2 API . 58
19.3 Engine . 58

ii

19.4 Patching . 59
19.5 Features . 59

20 How to support new model in lmdeploy.pytorch 61
20.1 Support New Model . 61
20.2 Support Tensor Parallelism . 64
20.3 Debug Module . 66
20.4 Appendix . 67

21 Context length extrapolation 69
21.1 Usage . 69
21.2 Evaluation . 69

22 Customized chat template 73

23 How to debug Turbomind 75
23.1 Prerequisite . 75
23.2 Configure Python debug environment . 75
23.3 Set up symbolic links . 77
23.4 Start debugging . 77
23.5 Using GDB . 78

24 LMDeploy-QoS Introduce and Usage 79
24.1 Background . 79
24.2 User Categorizations for Multi-tenancy Handling . 79
24.3 Multi-tenancy Strategies . 80
24.4 A Sample QoS Configuration . 83
24.5 How to perform inference job with Lmdeploy-QoS aware . 85
24.6 File Configuration Modification . 86
24.7 Passing Configuration Parameters . 86
24.8 Contributor . 86

25 inference pipeline 87
25.1 pipeline . 87
25.2 serving . 88
25.3 PytorchEngineConfig . 89
25.4 TurbomindEngineConfig . 90
25.5 GenerationConfig . 91
25.6 ChatTemplateConfig . 92

26 Indices and tables 93

Index 95

iii

iv

CHAPTER

ONE

GET STARTED

LMDeploy offers functionalities such as model quantization, offline batch inference, online serving, etc. Each function
can be completed with just a few simple lines of code or commands.

1.1 Installation

Install lmdeploy with pip (python 3.8+) or from source

pip install lmdeploy

The default prebuilt package is compiled on CUDA 12. However, if CUDA 11+ is required, you can install lmdeploy
by:

export LMDEPLOY_VERSION=0.3.0
export PYTHON_VERSION=38
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/
→˓lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-
→˓manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118

1.2 Offline batch inference

import lmdeploy
pipe = lmdeploy.pipeline("internlm/internlm-chat-7b")
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)

For more information on inference pipeline parameters, please refer to here.

1

lmdeploy Documentation, Release 0.4.1

1.3 Serving

LMDeploy offers various serving methods, choosing one that best meet your requirements.

• Serving with openai compatible server

• Serving with docker

• Serving with gradio

1.4 Quantization

LMDeploy provides the following quantization methods. Please visit the following links for the detailed guide

• 4bit weight-only quantization

• k/v quantization

• w8a8 quantization

1.5 Useful Tools

LMDeploy CLI offers the following utilities, helping users experience LLM features conveniently

1.5.1 Inference with Command line Interface

lmdeploy chat internlm/internlm-chat-7b

1.5.2 Serving with Web UI

LMDeploy adopts gradio to develop the online demo.

install dependencies
pip install lmdeploy[serve]
launch gradio server
lmdeploy serve gradio internlm/internlm-chat-7b

2 Chapter 1. Get Started

https://lmdeploy.readthedocs.io/en/latest/serving/api_server.html
https://lmdeploy.readthedocs.io/en/latest/serving/api_server.html#option-2-deploying-with-docker
https://lmdeploy.readthedocs.io/en/latest/serving/gradio.html

CHAPTER

TWO

BUILD FROM SOURCE

LMDeploy provides prebuilt package that can be easily installed by pip install lmdeploy.

If you have requests to build lmdeploy from source, please clone lmdeploy repository from GitHub, and follow instruc-
tions in next sections

git clone --depth=1 https://github.com/InternLM/lmdeploy

2.1 Build in Docker (recommended)

We highly advise using the provided docker image for lmdeploy build to circumvent complex environment setup.

The docker image is openmmlab/lmdeploy-builder:cuda11.8. Make sure that docker is installed before using this
image.

In the root directory of the lmdeploy source code, please run the following command:

the home folder of lmdeploy source code
cd lmdeploy
bash builder/manywheel/build_all_wheel.sh

All the wheel files for lmdeploy under py3.8 - py3.11 will be found in the builder/manywheel/cuda11.8_dist
directory, such as,

builder/manywheel/cuda11.8_dist/
lmdeploy-0.0.12-cp310-cp310-manylinux2014_x86_64.whl
lmdeploy-0.0.12-cp311-cp311-manylinux2014_x86_64.whl
lmdeploy-0.0.12-cp38-cp38-manylinux2014_x86_64.whl
lmdeploy-0.0.12-cp39-cp39-manylinux2014_x86_64.whl

If the wheel file for a specific Python version is required, such as py3.8, please execute:

bash builder/manywheel/build_wheel.sh py38 manylinux2014_x86_64 cuda11.8 cuda11.8_dist

And the wheel file will be found in the builder/manywheel/cuda11.8_dist directory.

You can use pip install to install the wheel file that matches the Python version on your host machine.

3

lmdeploy Documentation, Release 0.4.1

2.2 Build in localhost (optional)

Firstly, please make sure gcc version is no less than 9, which can be conformed by gcc --version.

Then, follow the steps below to set up the compilation environment:

• install the dependent packages:

pip install -r requirements.txt
apt-get install rapidjson-dev

• install nccl, and set environment variables:

export NCCL_ROOT_DIR=/path/to/nccl
export NCCL_LIBRARIES=/path/to/nccl/lib

• install openmpi from source:

wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.5.tar.gz
tar xf openmpi-4.1.5.tar.gz
cd openmpi-4.1.5
./configure --prefix=/usr/local/openmpi
make -j$(nproc) && make install
export PATH=$PATH:/usr/local/openmpi/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/openmpi/lib

• build and install lmdeploy libraries:

install ninja
apt install ninja-build
the home folder of lmdeploy
cd lmdeploy
mkdir build && cd build
sh ../generate.sh
ninja -j$(nproc) && ninja install

• install lmdeploy python package:

cd ..
pip install -e .

4 Chapter 2. Build from source

https://docs.nvidia.com/deeplearning/nccl/install-guide/index.html

CHAPTER

THREE

PROFILE TOKEN LATENCY AND THROUGHPUT

We profile the latency and throughput of generated tokens with fixed batch size and fixed input/output token.

The profiling script is profile_generation.py. Before running it, please install the lmdeploy precompiled package
and download the profiling script:

pip install lmdeploy
git clone --depth=1 https://github.com/InternLM/lmdeploy

3.1 Metrics

LMDeploy records test results like first token latency, token throughput (tokens/s), percentile data of each token’s
latency (P50, P75, P95, P99), GPU mem, etc.

first_token_latency is only reported in the case of streaming inference.

The formula for calculating throughput is:

$$ TokenThroughput = Number\ of\ generated\ tokens/TotalTime $$

Total time includes prefill time.

During the test process, all graphics cards on the node should not run any other programs, otherwise the statistics of
GPU mem would be inaccurate.

3.2 Profile

In this section, we take internlm/internlm-7b as an example to show how to profile the inference engines of LMDeploy.

3.2.1 Profile turbomind engine

cd lmdeploy/benchmark
python3 profile_generation.py internlm/internlm-7b

5

https://huggingface.co/internlm/internlm-7b

lmdeploy Documentation, Release 0.4.1

3.2.2 Profile pytorch engine

cd lmdeploy/benchmark
python3 profile_generation.py internlm/internlm-7b --backend pytorch

For detailed argument specification of profile_generation.py, such as batch size, input and output token number
an so on, please run the help command python3 profile_generation.py -h.

6 Chapter 3. Profile Token Latency and Throughput

CHAPTER

FOUR

PROFILE REQUEST THROUGHPUT

In the applications, the length of the user’s input prompt and the size of generated tokens are dynamic. The static
inference performance is insufficient to reflect the inference engine’s ability to handle the dynamic characteristics.

Therefore, it is necessary to use real dialogue data to evaluate the dynamic inference capabilities of the inference engine.
This article will introduce how to test the dynamic inference performance of LMDeploy on localhost.

The profiling script is profile_throughput.py. Before running it, please install the lmdeploy precompiled package,
download the profiling script and the test dataset:

pip install lmdeploy
git clone --depth=1 https://github.com/InternLM/lmdeploy
cd lmdeploy/benchmark
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/
→˓main/ShareGPT_V3_unfiltered_cleaned_split.json

4.1 Metrics

LMDeploy records the performance metrics like first token latency, token throughput (tokens/s) and request throughput
(RPM)

first_token_latency is only reported in the case of streaming inference.

The formula for calculating token throughput is:

$$ TokenThroughput = Number\ of\ generated\ tokens/TotalTime $$

And the formula for calculating request throughput is:

$$ RPM(request\ per\ minute) = Number\ of\ prompts/TotalTime * 60 $$

Total time includes prefill time.

4.2 Profile

In this section, we take internlm/internlm-7b as an example to show how to profile the inference engines of LMDeploy.

7

https://huggingface.co/internlm/internlm-7b

lmdeploy Documentation, Release 0.4.1

4.2.1 Profile turbomind engine

python3 profile_throughput.py ./ShareGPT_V3_unfiltered_cleaned_split.json internlm/
→˓internlm-7b

4.2.2 Profile pytorch engine

python3 profile_throughput.py ./ShareGPT_V3_unfiltered_cleaned_split.json internlm/
→˓internlm-7b --backend pytorch

For detailed argument specification of profile_throughput.py, such as request concurrency, sampling parameters,
k/v cache memory percentage an so on, please run the help command python3 profile_throughput.py -h.

8 Chapter 4. Profile Request Throughput

CHAPTER

FIVE

PROFILE API SERVER

The way to profiling api_server performance is similar to the method for profiling throughput. The difference is
api_server should be launched successfully before testing.

The profiling script is profile_restful_api.py. Before running it, please install the lmdeploy precompiled pack-
age, download the script and the test dataset:

pip install lmdeploy
git clone --depth=1 https://github.com/InternLM/lmdeploy
cd lmdeploy/benchmark
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/
→˓main/ShareGPT_V3_unfiltered_cleaned_split.json

5.1 Metrics

LMDeploy records the performance metrics like first token latency, token throughput (tokens/s) and request throughput
(RPM)

first_token_latency is only reported in the case of streaming inference.

The formula for calculating token throughput is:

$$ TokenThroughput = Number\ of\ generated\ tokens/TotalTime $$

And the formula for calculating request throughput is:

$$ RPM(request\ per\ minute)=Number\ of\ prompts/TotalTime * 60 $$

Total time includes prefill time.

5.2 Profile

In this section, we take internlm/internlm-7b as an example to show the benchmark procedure.

9

https://huggingface.co/internlm/internlm-7b

lmdeploy Documentation, Release 0.4.1

5.2.1 Launch api_server

lmdeploy serve api_server internlm/internlm-7b

If you would like to change the server’s port or other parameters, such as inference engine, max batch size and etc.,
please run lmdeploy serve api_server -h or read this guide to get the detailed explanation.

5.2.2 Profile

python3 profile_restful_api.py http://0.0.0.0:23333 internlm/internlm-7b ./ShareGPT_V3_
→˓unfiltered_cleaned_split.json

For detailed argument specification of profile_restful_api.py, such as request concurrency, sampling parameters
an so on, please run the help command python3 profile_restful_api.py -h.

10 Chapter 5. Profile API Server

CHAPTER

SIX

PROFILE TRITON INFERENCE SERVER

Triton Inference Server (TIS) is another serving method supported by LMDeploy besides api_server. Its performance
testing methods and metrics are similar to those of api_server.

The profiling script is profile_serving.py. Before running it, please install the lmdeploy precompiled package,
download the profiling script and the test dataset:

pip install 'lmdeploy[serve]'
git clone --depth=1 https://github.com/InternLM/lmdeploy
cd lmdeploy/benchmark
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/
→˓main/ShareGPT_V3_unfiltered_cleaned_split.json

6.1 Metrics

LMDeploy records the performance metrics like first token latency, token throughput (tokens/s) and request throughput
(RPM)

first_token_latency is only reported in the case of streaming inference.

The formula for calculating token throughput is:

$$ TokenThroughput=Number\ of\ generated\ tokens/TotalTime $$

And the formula for calculating request throughput is:

$$ RPM(request\ per\ minute)=Number\ of\ prompts/TotalTime * 60 $$

Total time includes prefill time.

6.2 Profile

In this section, we take internlm/internlm-7b as an example to show the benchmark procedure.

11

https://huggingface.co/internlm/internlm-7b

lmdeploy Documentation, Release 0.4.1

6.2.1 Launch triton inference server

Before launching the server, the LLM model must be converted to the turbomind format in advance.

lmdeploy convert internlm internlm/internlm-7b --dst-path ./internlm-7b --trust-remote-
→˓code

Then, the triton inference server can be launched by:

bash ./internlm-7b/service_docker_up.sh

6.2.2 Profile

python3 profile_serving.py 0.0.0.0:33337 ./internlm-7b/triton_models/tokenizer ./
→˓ShareGPT_V3_unfiltered_cleaned_split.json

For detailed argument specification of profile_serving.py, such as request concurrency, sampling parameters an
so on, please run the help command python3 profile_serving.py -h.

12 Chapter 6. Profile Triton Inference Server

CHAPTER

SEVEN

EVALUATE LLMS WITH OPENCOMPASS

The LLMs accelerated by lmdeploy can be evaluated with OpenCompass.

7.1 Setup

In this part, we are going to setup the environment for evaluation.

7.1.1 Install lmdeploy

Install lmdeploy through pip (python 3.8+). If you want to install from source, you can refer to build.md.

pip install lmdeploy

7.1.2 Install OpenCompass

Install OpenCompass from source. Refer to installation for more information.

git clone https://github.com/open-compass/opencompass.git
cd opencompass
pip install -e .

At present, you can check the Quick Start to get to know the basic usage of OpenCompass.

7.1.3 Download datasets

Download the core datasets

Run in the OpenCompass directory
cd opencompass
wget https://github.com/open-compass/opencompass/releases/download/0.1.8.rc1/
→˓OpenCompassData-core-20231110.zip
unzip OpenCompassData-core-20231110.zip

13

https://opencompass.readthedocs.io/en/latest/get_started/installation.html
https://opencompass.readthedocs.io/en/latest/get_started/quick_start.html

lmdeploy Documentation, Release 0.4.1

7.2 Prepare Evaluation Config

OpenCompass uses the configuration files as the OpenMMLab style. One can define a python config and start evaluating
at ease. OpenCompass has supported the evaluation for lmdeploy’s TurboMind engine using python API.

7.2.1 Dataset Config

In the home directory of OpenCompass, we are writing the config file $OPENCOMPASS_DIR/configs/
eval_lmdeploy.py. We select multiple predefined datasets and import them from OpenCompass base dataset configs
as datasets.

from mmengine.config import read_base

with read_base():
choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.race.race_gen_69ee4f import race_datasets
from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
and output the results in a chosen format
from .summarizers.medium import summarizer

datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])

7.2.2 Model Config

This part shows how to setup model config for LLMs. Let’s check some examples:

internlm-20b

internlm-chat-20b

from opencompass.models.turbomind import TurboMindModel

internlm_20b = dict(
type=TurboMindModel,
abbr='internlm-20b-turbomind',
path="internlm/internlm-20b", # this path should be same as in huggingface
engine_config=dict(session_len=2048,

max_batch_size=8,
rope_scaling_factor=1.0),

gen_config=dict(top_k=1, top_p=0.8,
temperature=1.0,
max_new_tokens=100),

max_out_len=100,
max_seq_len=2048,
batch_size=8,

(continues on next page)

14 Chapter 7. Evaluate LLMs with OpenCompass

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

concurrency=8,
run_cfg=dict(num_gpus=1, num_procs=1),

)

models = [internlm_20b]

For Chat models, you have to pass meta_template for chat models. Different Chat models may have different
meta_template and it’s important to keep it the same as in training settings. You can read meta_template for more
information.

from opencompass.models.turbomind import TurboMindModel

internlm_meta_template = dict(round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),

],
eos_token_id=103028)

internlm_chat_20b = dict(
type=TurboMindModel,
abbr='internlm-chat-20b-turbomind',
path='internlm/internlm-chat-20b',
engine_config=dict(session_len=2048,

max_batch_size=8,
rope_scaling_factor=1.0),

gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),

max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>'

)

models = [internlm_chat_20b]

Note

• If you want to pass more arguments for engine_configgen_config in the evaluation config file, please refer
to TurbomindEngineConfig and EngineGenerationConfig

7.2. Prepare Evaluation Config 15

https://opencompass.readthedocs.io/en/latest/prompt/meta_template.html
https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#turbomindengineconfig
https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#generationconfig

lmdeploy Documentation, Release 0.4.1

7.3 Execute Evaluation Task

After defining the evaluation config, we can run the following command to start evaluating models. You can check
Execution Task for more arguments of run.py.

in the root directory of opencompass
python3 run.py configs/eval_lmdeploy.py --work-dir ./workdir

16 Chapter 7. Evaluate LLMs with OpenCompass

https://opencompass.readthedocs.io/en/latest/user_guides/experimentation.html#task-execution-and-monitoring

CHAPTER

EIGHT

SUPPORTED MODELS

8.1 Models supported by TurboMind

“-” means not verified yet.

Note: The TurboMind engine doesn’t support window attention. Therefore, for models that have applied window
attention and have the corresponding switch “use_sliding_window” enabled, please choose the PyTorch engine for
inference.

8.2 Models supported by PyTorch

17

lmdeploy Documentation, Release 0.4.1

18 Chapter 8. Supported Models

CHAPTER

NINE

LLM OFFLINE INFERENCE PIPELINE

In this tutorial, We will present a list of examples to introduce the usage of lmdeploy.pipeline.

You can overview the detailed pipeline API in this guide.

9.1 Usage

• An example using default parameters:

from lmdeploy import pipeline

pipe = pipeline('internlm/internlm2-chat-7b')
response = pipe(['Hi, pls intro yourself', 'Shanghai is'])
print(response)

In this example, the pipeline by default allocates a predetermined percentage of GPU memory for storing k/v cache.
The ratio is dictated by the parameter TurbomindEngineConfig.cache_max_entry_count.

There have been alterations to the strategy for setting the k/v cache ratio throughout the evolution of LMDeploy. The
following are the change histories:

1. v0.2.0 <= lmdeploy <= v0.2.1

TurbomindEngineConfig.cache_max_entry_count defaults to 0.5, indicating 50% GPU total memory al-
located for k/v cache. Out Of Memory (OOM) errors may occur if a 7B model is deployed on a GPU with
memory less than 40G. If you encounter an OOM error, please decrease the ratio of the k/v cache occupation as
follows:

from lmdeploy import pipeline, TurbomindEngineConfig

decrease the ratio of the k/v cache occupation to 20%
backend_config = TurbomindEngineConfig(cache_max_entry_count=0.2)

pipe = pipeline('internlm/internlm2-chat-7b',
backend_config=backend_config)

response = pipe(['Hi, pls intro yourself', 'Shanghai is'])
print(response)

2. lmdeploy > v0.2.1

The allocation strategy for k/v cache is changed to reserve space from the GPU free memory proportionally.
The ratio TurbomindEngineConfig.cache_max_entry_count has been adjusted to 0.8 by default. If OOM

19

https://lmdeploy.readthedocs.io/en/latest/api/pipeline.html

lmdeploy Documentation, Release 0.4.1

error happens, similar to the method mentioned above, please consider reducing the ratio value to decrease the
memory usage of the k/v cache.

• An example showing how to set tensor parallel num:

from lmdeploy import pipeline, TurbomindEngineConfig

backend_config = TurbomindEngineConfig(tp=2)
pipe = pipeline('internlm/internlm2-chat-7b',

backend_config=backend_config)
response = pipe(['Hi, pls intro yourself', 'Shanghai is'])
print(response)

• An example for setting sampling parameters:

from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig

backend_config = TurbomindEngineConfig(tp=2)
gen_config = GenerationConfig(top_p=0.8,

top_k=40,
temperature=0.8,
max_new_tokens=1024)

pipe = pipeline('internlm/internlm2-chat-7b',
backend_config=backend_config)

response = pipe(['Hi, pls intro yourself', 'Shanghai is'],
gen_config=gen_config)

print(response)

• An example for OpenAI format prompt input:

from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig

backend_config = TurbomindEngineConfig(tp=2)
gen_config = GenerationConfig(top_p=0.8,

top_k=40,
temperature=0.8,
max_new_tokens=1024)

pipe = pipeline('internlm/internlm2-chat-7b',
backend_config=backend_config)

prompts = [[{
'role': 'user',
'content': 'Hi, pls intro yourself'

}], [{
'role': 'user',
'content': 'Shanghai is'

}]]
response = pipe(prompts,

gen_config=gen_config)
print(response)

• An example for streaming mode:

from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig

backend_config = TurbomindEngineConfig(tp=2)
(continues on next page)

20 Chapter 9. LLM Offline Inference Pipeline

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

gen_config = GenerationConfig(top_p=0.8,
top_k=40,
temperature=0.8,
max_new_tokens=1024)

pipe = pipeline('internlm/internlm2-chat-7b',
backend_config=backend_config)

prompts = [[{
'role': 'user',
'content': 'Hi, pls intro yourself'

}], [{
'role': 'user',
'content': 'Shanghai is'

}]]
for item in pipe.stream_infer(prompts, gen_config=gen_config):

print(item)

• Below is an example for pytorch backend. Please install triton first.

pip install triton>=2.1.0

from lmdeploy import pipeline, GenerationConfig, PytorchEngineConfig

backend_config = PytorchEngineConfig(session_len=2048)
gen_config = GenerationConfig(top_p=0.8,

top_k=40,
temperature=0.8,
max_new_tokens=1024)

pipe = pipeline('internlm/internlm-chat-7b',
backend_config=backend_config)

prompts = [[{
'role': 'user',
'content': 'Hi, pls intro yourself'

}], [{
'role': 'user',
'content': 'Shanghai is'

}]]
response = pipe(prompts, gen_config=gen_config)
print(response)

• An example for slora.

from lmdeploy import pipeline, GenerationConfig, PytorchEngineConfig

backend_config = PytorchEngineConfig(session_len=2048,
adapters=dict(lora_name_1='chenchi/lora-chatglm2-6b-

→˓guodegang'))
gen_config = GenerationConfig(top_p=0.8,

top_k=40,
temperature=0.8,
max_new_tokens=1024)

pipe = pipeline('THUDM/chatglm2-6b',
backend_config=backend_config)

(continues on next page)

9.1. Usage 21

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

prompts = [[{
'role': 'user',
'content': ''

}]]
response = pipe(prompts, gen_config=gen_config, adapter_name='lora_name_1')
print(response)

9.2 FAQs

• RuntimeError: An attempt has been made to start a new process before the current process has finished
its bootstrapping phase.

If you got this for tp>1 in pytorch backend. Please make sure the python script has following

if __name__ == '__main__':

Generally, in the context of multi-threading or multi-processing, it might be necessary to ensure that initializa-
tion code is executed only once. In this case, if __name__ == '__main__': can help to ensure that these
initialization codes are run only in the main program, and not repeated in each newly created process or thread.

• To customize a chat template, please refer to chat_template.md.

• If the weight of lora has a corresponding chat template, you can first register the chat template to lmdeploy, and
then use the chat template name as the adapter name.

22 Chapter 9. LLM Offline Inference Pipeline

CHAPTER

TEN

VLM OFFLINE INFERENCE PIPELINE

LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-
use pipeline, similar to the Large Language Model (LLM) inference pipeline.

Currently, it supports the following models.

• Qwen-VL-Chat

• LLaVA series: v1.5, v1.6

• Yi-VL

We genuinely invite the community to contribute new VLM support to LMDeploy. Your involvement is truly appreci-
ated.

This article showcases the VLM pipeline using the liuhaotian/llava-v1.6-vicuna-7b model as a case study. You’ll learn
about the simplest ways to leverage the pipeline and how to gradually unlock more advanced features by adjusting
engine parameters and generation arguments, such as tensor parallelism, context window sizing, random sampling,
and chat template customization. Moreover, we will provide practical inference examples tailored to scenarios with
multiple images, batch prompts etc.

10.1 A ‘Hello, world’ example

from lmdeploy import pipeline
from lmdeploy.vl import load_image

pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b')

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/
→˓data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

If ImportError occurs while executing this case, please install the required dependency packages as prompted.

In the above example, the inference prompt is a tuple structure consisting of (prompt, image). Besides this structure,
the pipeline also supports prompts in the OpenAI format:

from lmdeploy import pipeline

pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b')

prompts = [
(continues on next page)

23

https://huggingface.co/Qwen/Qwen-VL-Chat
https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e
https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2
https://huggingface.co/01-ai/Yi-VL-6B
https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

{
'role': 'user',
'content': [

{'type': 'text', 'text': 'describe this image'},
{'type': 'image_url', 'image_url': {'url': 'https://raw.githubusercontent.

→˓com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'}}
]

}
]
response = pipe(prompts)
print(response)

10.1.1 Set tensor parallelism

Tensor paramllelism can be activated by setting the engine parameter tp

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b',
backend_config=TurbomindEngineConfig(tp=2))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/
→˓data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

10.1.2 Set context window size

When creating the pipeline, you can customize the size of the context window by setting the engine parameter
session_len.

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b',
backend_config=TurbomindEngineConfig(session_len=8192))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/
→˓data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

24 Chapter 10. VLM Offline Inference Pipeline

lmdeploy Documentation, Release 0.4.1

10.1.3 Set sampling parameters

You can change the default sampling parameters of pipeline by passing GenerationConfig

from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b',
backend_config=TurbomindEngineConfig(tp=2, session_len=8192))

gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.6)
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/
→˓data/tiger.jpeg')
response = pipe(('describe this image', image), gen_config=gen_config)
print(response)

10.1.4 Set chat template

While performing inference, LMDeploy identifies an appropriate chat template from its builtin collection based on
the model path and subsequently applies this template to the input prompts. However, when a chat template cannot
be told from its model path, users have to specify it. For example, liuhaotian/llava-v1.5-7b employs the ‘vicuna’ chat
template, but the name ‘vicuna’ cannot be ascertained from the model’s path. We can specify it by setting ‘vicuna’ to
ChatTemplateConfig as follows:

from lmdeploy import pipeline, ChatTemplateConfig
from lmdeploy.vl import load_image
pipe = pipeline('liuhaotian/llava-v1.5-7b',

chat_template_config=ChatTemplateConfig(model_name='vicuna'))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/
→˓data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

For more information about customizing a chat template, please refer to this guide

10.2 Multi-images inference

When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a
higher number of input tokens, and as a result, the size of the context window typically needs to be increased.

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b',
backend_config=TurbomindEngineConfig(session_len=8192))

image_urls=[
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-

→˓pose.jpg',
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'

]
(continues on next page)

10.2. Multi-images inference 25

https://huggingface.co/liuhaotian/llava-v1.5-7b

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

images = [load_image(img_url) for img_url in image_urls]
response = pipe(('describe these images', images))
print(response)

10.3 Batch prompts inference

Conducting inference with batch prompts is quite straightforward; just place them within a list structure:

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b',
backend_config=TurbomindEngineConfig(session_len=8192))

image_urls=[
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-

→˓pose.jpg",
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"

]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)

10.4 Multi-turn conversation

There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the
format of OpenAI and use above introduced method, the other is to use the pipeline.chat interface.

from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
from lmdeploy.vl import load_image

pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b',
backend_config=TurbomindEngineConfig(session_len=8192))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/
→˓resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)

26 Chapter 10. VLM Offline Inference Pipeline

CHAPTER

ELEVEN

SERVING LLM WITH OPENAI COMPATIBLE SERVER

This article primarily discusses the deployment of a single LLM model across multiple GPUs on a single node, pro-
viding a service that is compatible with the OpenAI interface, as well as the usage of the service API. For the sake of
convenience, we refer to this service as api_server. Regarding parallel services with multiple models, please refer
to the guide about Request Distribution Server.

In the following sections, we will first introduce two methods for starting the service, choosing the appropriate one
based on your application scenario.

Next, we focus on the definition of the service’s RESTful API, explore the various ways to interact with the interface,
and demonstrate how to try the service through the Swagger UI or LMDeploy CLI tools.

Finally, we showcase how to integrate the service into a WebUI, providing you with a reference to easily set up a
demonstration demo.

11.1 Launch Service

Take the internlm2-chat-7b model hosted on huggingface hub as an example, you can choose one the following methods
to start the service.

11.1.1 Option 1: Launching with lmdeploy CLI

lmdeploy serve api_server internlm/internlm2-chat-7b --server-port 23333

The arguments of api_server can be viewed through the command lmdeploy serve api_server -h, for
instance, --tp to set tensor parallelism, --session-len to specify the max length of the context window,
--cache-max-entry-count to adjust the GPU mem ratio for k/v cache etc.

11.1.2 Option 2: Deploying with docker

With LMDeploy official docker image, you can run OpenAI compatible server as follows:

docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
-p 23333:23333 \
--ipc=host \
openmmlab/lmdeploy:latest \
lmdeploy serve api_server internlm/internlm2-chat-7b

27

https://huggingface.co/internlm/internlm2-chat-7b
https://hub.docker.com/r/openmmlab/lmdeploy/tags

lmdeploy Documentation, Release 0.4.1

The parameters of api_server are the same with that mentioned in “option 1” section

11.1.3 Option 3: Deploying to Kubernetes cluster

Connect to a running Kubernetes cluster and deploy the internlm2-chat-7b model service with kubectl command-line
tool (replace <your token> with your huggingface hub token):

sed 's/{{HUGGING_FACE_HUB_TOKEN}}/<your token>/' k8s/deployment.yaml | kubectl create -f␣
→˓- \

&& kubectl create -f k8s/service.yaml

In the example above the model data is placed on the local disk of the node (hostPath). Consider replacing it with
high-availability shared storage if multiple replicas are desired, and the storage can be mounted into container using
PersistentVolume.

11.2 RESTful API

LMDeploy’s RESTful API is compatible with the following three OpenAI interfaces:

• /v1/chat/completions

• /v1/models

• /v1/completions

Additionally, LMDeploy also defines /v1/chat/interactive to support interactive inference. The feature of inter-
active inference is that there’s no need to pass the user conversation history as required by v1/chat/completions,
since the conversation history will be cached on the server side. This method boasts excellent performance during
multi-turn long context inference.

You can overview and try out the offered RESTful APIs by the website http://0.0.0.0:23333 as shown in the
below image after launching the service successfully.

28 Chapter 11. Serving LLM with OpenAI Compatible Server

https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

lmdeploy Documentation, Release 0.4.1

Or, you can use the LMDeploy’s built-in CLI tool to verify the service correctness right from the console.

restful_api_url is what printed in api_server.py, e.g. http://localhost:23333
lmdeploy serve api_client ${api_server_url}

If you need to integrate the service into your own projects or products, we recommend the following approach:

11.2.1 Integrate with OpenAI

Here is an example of interaction with the endpoint v1/chat/completions service via the openai package. Before
running it, please install the openai package by pip install openai

from openai import OpenAI
client = OpenAI(

api_key='YOUR_API_KEY',
base_url="http://0.0.0.0:23333/v1"

)
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,

(continues on next page)

11.2. RESTful API 29

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": " provide three suggestions about time management"},

],
temperature=0.8,
top_p=0.8

)
print(response)

If you want to use async functions, may try the following example:

import asyncio
from openai import AsyncOpenAI

async def main():
client = AsyncOpenAI(api_key='YOUR_API_KEY',

base_url='http://0.0.0.0:23333/v1')
model_cards = await client.models.list()._get_page()
response = await client.chat.completions.create(

model=model_cards.data[0].id,
messages=[

{
'role': 'system',
'content': 'You are a helpful assistant.'

},
{

'role': 'user',
'content': ' provide three suggestions about time management'

},
],
temperature=0.8,
top_p=0.8)

print(response)

asyncio.run(main())

You can invoke other OpenAI interfaces using similar methods. For more detailed information, please refer to the
OpenAI API guide

11.2.2 Integrate with lmdeploy APIClient

Below are some examples demonstrating how to visit the service through APIClient

If you want to use the /v1/chat/completions endpoint, you can try the following code:

from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient('http://{server_ip}:{server_port}')
model_name = api_client.available_models[0]
messages = [{"role": "user", "content": "Say this is a test!"}]
for item in api_client.chat_completions_v1(model=model_name, messages=messages):

print(item)

For the /v1/completions endpoint, you can try:

30 Chapter 11. Serving LLM with OpenAI Compatible Server

https://platform.openai.com/docs/guides/text-generation

lmdeploy Documentation, Release 0.4.1

from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient('http://{server_ip}:{server_port}')
model_name = api_client.available_models[0]
for item in api_client.completions_v1(model=model_name, prompt='hi'):

print(item)

As for /v1/chat/interactivewe disable the feature by default. Please open it by setting interactive_mode =
True. If you don’t, it falls back to openai compatible interfaces.

Keep in mind that session_id indicates an identical sequence and all requests belonging to the same sequence must
share the same session_id. For instance, in a sequence with 10 rounds of chatting requests, the session_id in each
request should be the same.

from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient(f'http://{server_ip}:{server_port}')
messages = [

"hi, what's your name?",
"who developed you?",
"Tell me more about your developers",
"Summarize the information we've talked so far"

]
for message in messages:

for item in api_client.chat_interactive_v1(prompt=message,
session_id=1,
interactive_mode=True,
stream=False):

print(item)

11.2.3 Integrate with Java/Golang/Rust

May use openapi-generator-cli to convert http://{server_ip}:{server_port}/openapi.json to
java/rust/golang client. Here is an example:

$ docker run -it --rm -v ${PWD}:/local openapitools/openapi-generator-cli generate -i /
→˓local/openapi.json -g rust -o /local/rust

$ ls rust/*
rust/Cargo.toml rust/git_push.sh rust/README.md

rust/docs:
ChatCompletionRequest.md EmbeddingsRequest.md HttpValidationError.md LocationInner.md␣
→˓ Prompt.md
DefaultApi.md GenerateRequest.md Input.md Messages.md ␣
→˓ ValidationError.md

rust/src:
apis lib.rs models

11.2. RESTful API 31

https://github.com/OpenAPITools/openapi-generator-cli

lmdeploy Documentation, Release 0.4.1

11.2.4 Integrate with cURL

cURL is a tool for observing the output of the RESTful APIs.

• list served models v1/models

curl http://{server_ip}:{server_port}/v1/models

• chat v1/chat/completions

curl http://{server_ip}:{server_port}/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{

"model": "internlm-chat-7b",
"messages": [{"role": "user", "content": "Hello! How are you?"}]

}'

• text completions v1/completions

curl http://{server_ip}:{server_port}/v1/completions \
-H 'Content-Type: application/json' \
-d '{
"model": "llama",
"prompt": "two steps to build a house:"

}'

• interactive chat v1/chat/interactive

curl http://{server_ip}:{server_port}/v1/chat/interactive \
-H "Content-Type: application/json" \
-d '{

"prompt": "Hello! How are you?",
"session_id": 1,
"interactive_mode": true

}'

11.3 Integrate with WebUI

LMDeploy utilizes gradio or OpenAOE to integrate a web ui for api_server

11.3.1 Option 1: gradio

api_server_url is what printed in api_server.py, e.g. http://localhost:23333
server_ip and server_port here are for gradio ui
example: lmdeploy serve gradio http://localhost:23333 --server-name localhost --server-
→˓port 6006
lmdeploy serve gradio api_server_url --server-name ${gradio_ui_ip} --server-port $
→˓{gradio_ui_port}

32 Chapter 11. Serving LLM with OpenAI Compatible Server

https://github.com/InternLM/OpenAOE

lmdeploy Documentation, Release 0.4.1

11.3.2 Option 2: OpenAOE

pip install -U openaoe
openaoe -f /path/to/your/config-template.yaml

Please refer to the guidance for more deploy information.

11.4 FAQ

1. When user got "finish_reason":"length", it means the session is too long to be continued. The session
length can be modified by passing --session_len to api_server.

2. When OOM appeared at the server side, please reduce the cache_max_entry_count of backend_config
when lanching the service.

3. When the request with the same session_id to /v1/chat/interactive got a empty return value and a neg-
ative tokens, please consider setting interactive_mode=false to restart the session.

4. The /v1/chat/interactive api disables engaging in multiple rounds of conversation by default. The input
argument prompt consists of either single strings or entire chat histories.

5. Regarding the stop words, we only support characters that encode into a single index. Furthermore, there may be
multiple indexes that decode into results containing the stop word. In such cases, if the number of these indexes
is too large, we will only use the index encoded by the tokenizer. If you want use a stop symbol that encodes into
multiple indexes, you may consider performing string matching on the streaming client side. Once a successful
match is found, you can then break out of the streaming loop.

6. To customize a chat template, please refer to chat_template.md.

11.4. FAQ 33

https://github.com/InternLM/OpenAOE/blob/main/docs/tech-report/model_serving_by_lmdeploy/model_serving_by_lmdeploy.md

lmdeploy Documentation, Release 0.4.1

34 Chapter 11. Serving LLM with OpenAI Compatible Server

CHAPTER

TWELVE

SERVING VLM WITH OPENAI COMPATIBLE SERVER

This article primarily discusses the deployment of a single large vision language model across multiple GPUs on a
single node, providing a service that is compatible with the OpenAI interface, as well as the usage of the service API.
For the sake of convenience, we refer to this service as api_server. Regarding parallel services with multiple models,
please refer to the guide about Request Distribution Server.

In the following sections, we will first introduce two methods for starting the service, choosing the appropriate one
based on your application scenario.

Next, we focus on the definition of the service’s RESTful API, explore the various ways to interact with the interface,
and demonstrate how to try the service through the Swagger UI or LMDeploy CLI tools.

Finally, we showcase how to integrate the service into a WebUI, providing you with a reference to easily set up a
demonstration demo.

12.1 Launch Service

Take the llava-v1.6-vicuna-7b model hosted on huggingface hub as an example, you can choose one the following
methods to start the service.

12.1.1 Option 1: Launching with lmdeploy CLI

lmdeploy serve api_server liuhaotian/llava-v1.6-vicuna-7b --server-port 23333

The arguments of api_server can be viewed through the command lmdeploy serve api_server -h, for
instance, --tp to set tensor parallelism, --session-len to specify the max length of the context window,
--cache-max-entry-count to adjust the GPU mem ratio for k/v cache etc.

12.1.2 Option 2: Deploying with docker

With LMDeploy official docker image, you can run OpenAI compatible server as follows:

docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
-p 23333:23333 \
--ipc=host \
openmmlab/lmdeploy:latest \
lmdeploy serve api_server liuhaotian/llava-v1.6-vicuna-7b

35

https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
https://hub.docker.com/r/openmmlab/lmdeploy/tags

lmdeploy Documentation, Release 0.4.1

The parameters of api_server are the same with that mentioned in “option 1” section

Each model may require specific dependencies not included in the Docker image. If you run into issues, you may need
to install those yourself on a case-by-case basis. If in doubt, refer to the specific model’s project for documentation.

For example, for Llava:

FROM openmmlab/lmdeploy:latest

RUN apt-get update && apt-get install -y python3 python3-pip git

WORKDIR /app

RUN pip3 install --upgrade pip
RUN pip3 install timm
RUN pip3 install git+https://github.com/haotian-liu/LLaVA.git --no-deps

COPY . .

CMD ["lmdeploy", "serve", "api_server", "liuhaotian/llava-v1.6-34b"]

12.2 RESTful API

LMDeploy’s RESTful API is compatible with the following three OpenAI interfaces:

• /v1/chat/completions

• /v1/models

• /v1/completions

The interface for image interaction is /v1/chat/completions, which is consistent with OpenAI.

You can overview and try out the offered RESTful APIs by the website http://0.0.0.0:23333 as shown in the
below image after launching the service successfully.

36 Chapter 12. Serving VLM with OpenAI Compatible Server

lmdeploy Documentation, Release 0.4.1

If you need to integrate the service into your own projects or products, we recommend the following approach:

12.2.1 Integrate with OpenAI

Here is an example of interaction with the endpoint v1/chat/completions service via the openai package. Before
running it, please install the openai package by pip install openai

from openai import OpenAI

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(

model=model_name,
messages=[{

'role':
'user',
'content': [{

'type': 'text',
'text': 'Describe the image please',

}, {
(continues on next page)

12.2. RESTful API 37

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

'type': 'image_url',
'image_url': {

'url':
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/

→˓tiger.jpeg',
},

}],
}],
temperature=0.8,
top_p=0.8)

print(response)

12.2.2 Integrate with lmdeploy APIClient

Below are some examples demonstrating how to visit the service through APIClient

If you want to use the /v1/chat/completions endpoint, you can try the following code:

from lmdeploy.serve.openai.api_client import APIClient

api_client = APIClient(f'http://0.0.0.0:23333')
model_name = api_client.available_models[0]
messages = [{

'role':
'user',
'content': [{

'type': 'text',
'text': 'Describe the image please',

}, {
'type': 'image_url',
'image_url': {

'url':
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.

→˓jpeg',
},

}]
}]
for item in api_client.chat_completions_v1(model=model_name,

messages=messages):
print(item)

12.2.3 Integrate with Java/Golang/Rust

May use openapi-generator-cli to convert http://{server_ip}:{server_port}/openapi.json to
java/rust/golang client. Here is an example:

$ docker run -it --rm -v ${PWD}:/local openapitools/openapi-generator-cli generate -i /
→˓local/openapi.json -g rust -o /local/rust

$ ls rust/*
(continues on next page)

38 Chapter 12. Serving VLM with OpenAI Compatible Server

https://github.com/OpenAPITools/openapi-generator-cli

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

rust/Cargo.toml rust/git_push.sh rust/README.md

rust/docs:
ChatCompletionRequest.md EmbeddingsRequest.md HttpValidationError.md LocationInner.md␣
→˓ Prompt.md
DefaultApi.md GenerateRequest.md Input.md Messages.md ␣
→˓ ValidationError.md

rust/src:
apis lib.rs models

12.2. RESTful API 39

lmdeploy Documentation, Release 0.4.1

40 Chapter 12. Serving VLM with OpenAI Compatible Server

CHAPTER

THIRTEEN

SERVING WITH GRADIO

Starting an LLM model’s gradio service with LMDeploy and interacting with the model on the WebUI is incredibly
simple.

pip install lmdeploy[serve]
lmdeploy serve gradio {model_path}

All it takes is one-line command, with the {model_path} replaced by the model ID from huggingface hub, such as
internlm/internlm2-chat-7b, or the local path to the model.

For detailed parameters of the command, please turn to lmdeploy serve gradio -h for help.

13.1 Create a huggingface demo

If you want to create an online demo project for your model on huggingface, please follow the steps below.

13.1.1 Step 1: Create space

First, register for a Hugging Face account. After successful registration, click on your profile picture in the upper right
corner and select “New Space” to create one. Follow the Hugging Face guide to choose the necessary configurations,
and you will have a blank demo space ready.

13.1.2 Step 2: Develop demo’s entrypoint app.py

Replace the content of app.py in your space with the following code:

from lmdeploy.serve.gradio.turbomind_coupled import run_local
from lmdeploy.messages import TurbomindEngineConfig

backend_config = TurbomindEngineConfig(max_batch_size=8)
model_path = 'internlm/internlm2-chat-7b'
run_local(model_path, backend_config=backend_config, server_name="huggingface-space")

Create a requirements.txt file with the following content:

lmdeploy

41

lmdeploy Documentation, Release 0.4.1

13.2 FAQs

• ZeroGPU compatibility issue. ZeroGPU is not suitable for LMDeploy turbomind engine. Please use the standard
GPUs. Or, you can change the backend config in the above code to PyTorchEngineConfig to use the ZeroGPU.

• Gradio version issue, versions above 4.0.0 are currently not supported. You can modify this in app.py, for
example:

import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.43.0")

42 Chapter 13. Serving with Gradio

CHAPTER

FOURTEEN

REQUEST DISTRIBUTOR SERVER

The request distributor service can parallelize multiple api_server services. Users only need to access the proxy URL,
and they can indirectly access different api_server services. The proxy service will automatically distribute requests
internally, achieving load balancing.

14.1 Startup

Start the proxy service:

python3 -m lmdeploy.serve.proxy.proxy --server_name {server_name} --server_port {server_
→˓port} --strategy "min_expected_latency"

After startup is successful, the URL of the proxy service will also be printed by the script. Access this URL in your
browser to open the Swagger UI.

14.2 API

Through Swagger UI, we can see multiple APIs. Those related to api_server node management include:

• /nodes/status

• /nodes/add

• /nodes/remove

They respectively represent viewing all api_server service nodes, adding a certain node, and deleting a certain node.

APIs related to usage include:

• /v1/models

• /v1/chat/completions

• /v1/completions

The usage of these APIs is the same as that of api_server.

43

lmdeploy Documentation, Release 0.4.1

14.3 Dispatch Strategy

The current distribution strategies of the proxy service are as follows:

• random dispatches based on the ability of each api_server node provided by the user to process requests. The
greater the request throughput, the more likely it is to be allocated. Nodes that do not provide throughput are
treated according to the average throughput of other nodes.

• min_expected_latency allocates based on the number of requests currently waiting to be processed on each node,
and the throughput capability of each node, calculating the expected time required to complete the response. The
shortest one gets allocated. Nodes that do not provide throughput are treated similarly.

• min_observed_latency allocates based on the average time required to handle a certain number of past requests
on each node. The one with the shortest time gets allocated.

44 Chapter 14. Request Distributor Server

CHAPTER

FIFTEEN

W4A16 QUANTIZATION

LMDeploy adopts AWQ algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel,
the 4bit quantized model inference achieves up to 2.4x faster than FP16.

LMDeploy supports the following NVIDIA GPU for W4A16 inference:

• Turing(sm75): 20 series, T4

• Ampere(sm80,sm86): 30 series, A10, A16, A30, A100

• Ada Lovelace(sm90): 40 series

Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.

pip install lmdeploy[all]

This article comprises the following sections:

• Quantization

• Evaluation

• Inference

• Service

• Performance

15.1 Quantization

A single command execution is all it takes to quantize the model. The resulting quantized weights are then stored in
the $WORK_DIR directory.

export HF_MODEL=internlm/internlm2-chat-7b
export WORK_DIR=internlm/internlm2-chat-7b-4bit

lmdeploy lite auto_awq \
$HF_MODEL \
--calib-dataset 'ptb' \
--calib-samples 128 \
--calib-seqlen 2048 \
--w-bits 4 \
--w-group-size 128 \
--batch-size 1 \

(continues on next page)

45

https://arxiv.org/abs/2306.00978

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

--search-scale False \
--work-dir $WORK_DIR

Typically, the above command doesn’t require filling in optional parameters, as the defaults usually suffice. For instance,
when quantizing the internlm/internlm2-chat-7b model, the command can be condensed as:

lmdeploy lite auto_awq internlm/internlm2-chat-7b --work-dir internlm2-chat-7b-4bit

Note:

• We recommend that you specify the –work-dir parameter, including the model name as demonstrated in the
example above. This facilitates LMDeploy in fuzzy matching the –work-dir with an appropriate built-in chat
template. Otherwise, you will have to designate the chat template during inference.

• If the quantized model’s accuracy is compromised, it is recommended to enable –search-scale for re-quantization
and increase the –batch-size, for example, to 8. When search_scale is enabled, the quantization process will take
more time. The –batch-size affects the amount of memory used, which can be adjusted according to actual
conditions as needed.

Upon completing quantization, you can engage with the model efficiently using a variety of handy tools.

For example, you can initiate a conversation with it via the command line:

lmdeploy chat ./internlm2-chat-7b-4bit --model-format awq

Alternatively, you can start the gradio server and interact with the model through the web at http://
{ip_addr}:{port

lmdeploy serve gradio ./internlm2-chat-7b-4bit --server_name {ip_addr} --server_port
→˓{port} --model-format awq

15.2 Evaluation

Please overview this guide about model evaluation with LMDeploy.

15.3 Inference

Trying the following codes, you can perform the batched offline inference with the quantized model:

from lmdeploy import pipeline, TurbomindEngineConfig
engine_config = TurbomindEngineConfig(model_format='awq')
pipe = pipeline("./internlm2-chat-7b-4bit", backend_config=engine_config)
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)

For more information about the pipeline parameters, please refer to here.

In addition to performing inference with the quantized model on localhost, LMDeploy can also execute inference for the
4bit quantized model derived from AWQ algorithm available on Huggingface Hub, such as models from the lmdeploy
space and TheBloke space

46 Chapter 15. W4A16 Quantization

https://huggingface.co/internlm/internlm2-chat-7b
https://opencompass.readthedocs.io/en/latest/advanced_guides/evaluation_turbomind.html
https://huggingface.co/lmdeploy
https://huggingface.co/lmdeploy
https://huggingface.co/TheBloke

lmdeploy Documentation, Release 0.4.1

inference with models from lmdeploy space
from lmdeploy import pipeline, TurbomindEngineConfig
pipe = pipeline("lmdeploy/llama2-chat-70b-4bit",

backend_config=TurbomindEngineConfig(model_format='awq', tp=4))
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)

inference with models from thebloke space
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
pipe = pipeline("TheBloke/LLaMA2-13B-Tiefighter-AWQ",

backend_config=TurbomindEngineConfig(model_format='awq'),
chat_template_config=ChatTemplateConfig(model_name='llama2')
)

response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)

15.4 Service

LMDeploy’s api_server enables models to be easily packed into services with a single command. The provided
RESTful APIs are compatible with OpenAI’s interfaces. Below are an example of service startup:

lmdeploy serve api_server ./internlm2-chat-7b-4bit --backend turbomind --model-format awq

The default port of api_server is 23333. After the server is launched, you can communicate with server on terminal
through api_client:

lmdeploy serve api_client http://0.0.0.0:23333

You can overview and try out api_server APIs online by swagger UI at http://0.0.0.0:23333, or you can also
read the API specification from here.

15.5 Performance

We benchmarked the Llama-2-7B-chat and Llama-2-13B-chat models with 4-bit quantization on NVIDIA GeForce
RTX 4090 using profile_generation.py. And we measure the token generation throughput (tokens/s) by setting a single
prompt token and generating 512 tokens. All the results are measured for single batch inference.

15.4. Service 47

https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py

lmdeploy Documentation, Release 0.4.1

48 Chapter 15. W4A16 Quantization

CHAPTER

SIXTEEN

KEY-VALUE(KV) CACHE QUANTIZATION

Since v0.4.0, LMDeploy has supported online key-value (kv) cache quantization with int4 and int8 numerical precision,
utilizing an asymmetric quantization method that is applied on a per-head, per-token basis. The original kv offline
quantization method has been removed.

Intuitively, quantizing the kv cache is beneficial for reducing memory usage. Compared to FP16, the memory for
int4/int8 kv can be reduced to 1/4 and 1/2, respectively. This means that under the same memory conditions, the
system can support a significantly increased number of concurrent operations after kv quantization, thereby ultimately
enhancing throughput.

However, quantization typically brings in some loss of model accuracy. We have used OpenCompass to evaluate the
accuracy of several models after applying int4/int8 quantization. int8 kv keeps the accuracy while int4 kv has slight
loss. The detailed results are presented in the Evaluation section. You can refer to the information and choose wisely
based on your requirements.

LMDeploy inference with quantized kv supports the following NVIDIA GPU models:

• Volta architecture (sm70): V100

• Turing architecture (sm75): 20 series, T4

• Ampere architecture (sm80, sm86): 30 series, A10, A16, A30, A100

• Ada Lovelace architecture (sm89): 40 series

• Hopper architecture (sm90): H100, H200

In summary, LMDeploy kv quantization has the following advantages:

1. data-free online quantization

2. Supports all nvidia GPU models with Volta architecture (sm70) and above

3. KV int8 quantization has almost lossless accuracy, and KV int4 quantization accuracy is within an acceptable
range

4. Efficient inference, with int8/int4 kv quantization applied to llama2-7b, RPS is improved by round 30% and 40%
respectively compared to fp16

In the next section, we will take internlm2-chat-7b model as an example, introducing the usage of kv quantization
and inference of lmdeploy. But before that, please ensure that lmdeploy is installed.

pip install lmdeploy

49

lmdeploy Documentation, Release 0.4.1

16.1 Usage

Applying kv quantization and inference via LMDeploy is quite straightforward. Simply set the quant_policy param-
eter.

LMDeploy specifies that quant_policy=4 stands for 4-bit kv, whereas quant_policy=8 indicates 8-bit kv.

16.1.1 Offline inference

from lmdeploy import pipeline, TurbomindEngineConfig
engine_config = TurbomindEngineConfig(quant_policy=8)
pipe = pipeline("internlm/internlm2-chat-7b", backend_config=engine_config)
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)

16.1.2 Serving

lmdeploy serve api_server internlm/internlm2-chat-7b --quant-policy 8

16.2 Evaluation

We apply kv quantization of LMDeploy to several LLM models and utilize OpenCompass to evaluate the inference
accuracy. The results are shown in the table below:

For detailed evaluation methods, please refer to this guide. Remember to pass quant_policy to the inference engine
in the config file.

16.3 Performance

The performance data is obtained by benchmark/profile_throughput.py

50 Chapter 16. Key-Value(KV) Cache Quantization

CHAPTER

SEVENTEEN

W8A8 LLM MODEL DEPLOYMENT

LMDeploy provides functions for quantization and inference of large language models using 8-bit integers.

Before starting inference, ensure that lmdeploy and openai/triton are correctly installed. Execute the following com-
mands to install these:

pip install lmdeploy
pip install triton>=2.1.0

17.1 8-bit Weight Model Inference

For performing 8-bit weight model inference, you can directly download the pre-quantized 8-bit weight models from
LMDeploy’s model zoo. For instance, the 8-bit Internlm-chat-7B model is available for direct download from the
model zoo:

git-lfs install
git clone https://huggingface.co/lmdeploy/internlm-chat-7b-w8 (coming soon)

Alternatively, you can manually convert original 16-bit weights into 8-bit by referring to the content under the “8bit
Weight Quantization” section. Save them in the internlm-chat-7b-w8 directory, using the command below:

lmdeploy lite smooth_quant internlm/internlm-chat-7b --work-dir ./internlm-chat-7b-w8

Afterwards, use the following command to interact with the model via the terminal:

lmdeploy chat ./internlm-chat-7b-w8 --backend pytorch

17.2 Launching gradio service

Coming soon. . .

51

https://huggingface.co/lmdeploy

lmdeploy Documentation, Release 0.4.1

17.3 Inference Speed

Coming soon. . .

17.4 8bit Weight Quantization

Performing 8bit weight quantization involves three steps:

1. Smooth Weights: Start by smoothing the weights of the Language Model (LLM). This process makes the weights
more amenable to quantizing.

2. Replace Modules: Locate DecoderLayers and replace the modules RSMNorm and nn.Linear with
QRSMNorm and QLinear modules respectively. These ‘Q’ modules are available in the lmde-
ploy/pytorch/models/q_modules.py file.

3. Save the Quantized Model: Once you’ve made the necessary replacements, save the new quantized model.

The script lmdeploy/lite/apis/smooth_quant.py accomplishes all three tasks detailed above. For example, you
can obtain the model weights of the quantized Internlm-chat-7B model by running the following command:

lmdeploy lite smooth_quant internlm/internlm-chat-7b --work-dir ./internlm-chat-7b-w8

After saving, you can instantiate your quantized model by calling the from_pretrained interface.

52 Chapter 17. W8A8 LLM Model Deployment

CHAPTER

EIGHTEEN

ARCHITECTURE OF TURBOMIND

TurboMind is an inference engine that supports high throughput inference for conversational LLMs. It’s based on
NVIDIA’s FasterTransformer. Major features of TurboMind include an efficient LLaMa implementation, the persistent
batch inference model and an extendable KV cache manager.

18.1 High level overview of TurboMind

+--------------------+
| API |
+--------------------+

| ^
request | | stream callback

v |
+--------------------+ fetch +-------------------+
| Persistent Batch | <-------> | KV Cache Manager |
+--------------------+ update +-------------------+

^
|
v

+------------------------+
| LLaMA implementation |
+------------------------+
| FT kernels & utilities |
+------------------------+

18.2 Persistent Batch

You may recognize this feature as “continuous batching” in other repos. But during the concurrent development of the
feature, we modeled the inference of a conversational LLM as a persistently running batch whose lifetime spans the
entire serving process, hence the name “persistent batch”. To put it simply

• The persistent batch as N pre-configured batch slots.

• Requests join the batch when there are free slots available. A batch slot is released and can be reused once the
generation of the requested tokens is finished.

• On cache-hits (see below), history tokens don’t need to be decoded in every round of a conversation; gen-
eration of response tokens will start instantly.

• The batch grows or shrinks automatically to minimize unnecessary computations.

53

https://github.com/NVIDIA/FasterTransformer

lmdeploy Documentation, Release 0.4.1

18.3 KV Cache Manager

The KV cache manager of TurboMind is a memory-pool-liked object that also implements LRU policy so that it can
be viewed as a form of cache of KV caches. It works in the following way

• All device memory required for KV cache is allocated by the manager. A fixed number of slots is pre-configured
to match the memory size of the system. Each slot corresponds to the memory required by the KV cache of a
single sequence. Allocation chunk-size can be configure to implement pre-allocate/on-demand style allocation
policy (or something in-between).

• When space for the KV cache of a new sequence is requested but no free slots left in the pool, the least recently
used sequence is evicted from the cache and its device memory is directly reused by the new sequence. However,
this is not the end of the story.

• Fetching sequence currently resides in one of the slots resembles a cache-hit, the history KV cache is returned
directly and no context decoding is needed.

• Victim (evicted) sequences are not erased entirely but converted to its most compact form, i.e. token IDs. When
the same sequence id is fetched later (cache-miss) the token IDs will be decoded by FMHA backed context
decoder and converted back to KV cache.

• The eviction and conversion are handled automatically inside TurboMind and thus transparent to the users. From
the user’s aspect, system that use TurboMind has access to infinite device memory.

18.4 LLaMa implementation

Our implementation of the LLaMa family models is modified from Gpt-NeoX model in FasterTransformer. In addition
to basic refactoring and modifications to support the LLaMa family, we made some improvements to enable high
performance inference of conversational models, most importantly:

• To support fast context decoding in multi-round conversations. We replaced the attention implementation in
context decoder with a cutlass-based FMHA implementation that supports mismatched Q/K lengths.

• We introduced indirect buffer pointers in both context FMHA and generation FMHA to support the discontinuity
in KV cache within the batch.

• To support concurrent inference with persistent batch, new synchronization mechanism was designed to orches-
trate the worker threads running in tensor parallel mode.

• To maximize the throughput, we implement INT8 KV cache support to increase the max batch size. It’s effective
because in real-world serving scenarios, KV cache costs more memory and consumes more memory bandwidth
than weights or other activations.

• We resolved an NCCL hang issue when running multiple model instances in TP mode within a single process,
NCCL APIs are now guarded by host-side synchronization barriers.

54 Chapter 18. Architecture of TurboMind

https://github.com/InternLM/lmdeploy/blob/main/src/turbomind/models/llama/SequenceManager.h
https://github.com/NVIDIA/cutlass

lmdeploy Documentation, Release 0.4.1

18.5 API

TurboMind supports a Python API that enables streaming output and tensor parallel mode.

The ability to use tritonserver for serving is also inherited from FasterTransformer. However, to support submitting
concurrent requests into our persistent batch model, we no longer use sequence batching or dynamic batching as Faster-
Transformer does. The bookkeeping of request and sequence states are managed by TurboMind instead.

18.6 Difference between FasterTransformer and TurboMind

Apart of the features described above, there are still many minor differences that we don’t cover in this document.
Notably, many capabilities of FT are dropped in TurboMind because of the difference in objectives (e.g. prefix prompt,
beam search, context embedding, sparse GEMM, GPT/T5/other model families, etc)

18.7 FAQ

18.7.1 Supporting Huggingface models

For historical reasons, TurboMind’s weight layout is based on the original LLaMa implementation (differ only by a
transpose). The implementation in huggingface transformers uses a different layout for W_q and W_k which is handled
in deploy.py.

18.5. API 55

https://github.com/triton-inference-server/server
https://github.com/facebookresearch/llama
https://github.com/huggingface/transformers/blob/45025d92f815675e483f32812caa28cce3a960e7/src/transformers/models/llama/convert_llama_weights_to_hf.py#L123C76-L123C76
https://github.com/InternLM/lmdeploy/blob/ff4648a1d09e5aec74cf70efef35bfaeeac552e0/lmdeploy/serve/turbomind/deploy.py#L398

lmdeploy Documentation, Release 0.4.1

56 Chapter 18. Architecture of TurboMind

CHAPTER

NINETEEN

ARCHITECTURE OF LMDEPLOY.PYTORCH

lmdeploy.pytorch is an inference engine in LMDeploy that offers a developer-friendly framework to users interested
in deploying their own models and developing new features.

19.1 Design

57

lmdeploy Documentation, Release 0.4.1

19.2 API

lmdeploy.pytorch shares service interfaces with Turbomind, and the inference service is implemented by Engine
and EngineInstance.

EngineInstance acts as the sender of inference requests, encapsulating and sending requests to the Engine to achieve
streaming inference. The inference interface of EngineInstance is thread-safe, allowing instances in different threads
to initiate requests simultaneously. The Engine will automatically perform batch processing based on the current
system resources.

Engine is the request receiver and executor. It contain modules:

• ModelAgent serves as a wrapper for the model, handling tasks such as loading model/adapters, managing the
cache, and implementing tensor parallelism.

• The Scheduler functions as the sequence manager, determining the sequences and adapters to participate in the
current step, and subsequently allocating resources for them.

• RequestManager is tasked with sending and receiving requests. acting as the bridge between the Engine and
EngineInstance.

19.3 Engine

The Engine responses to requests in a sub-thread, following this looping sequence:

1. Get new requests through RequestManager. These requests are cached for now.

2. The Scheduler performs scheduling, deciding which cached requests should be processed and allocating re-
sources for them.

3. ModelAgent swaps the caches according to the information provided by the Scheduler, then performs inference
with the patched model.

4. The Scheduler updates the status of requests based to the inference results from ModelAgent.

5. RequestManager responds to the sender (EngineInstance), and the process return to step 1.

Now, Let’s delve deeper into the modules that participate in these steps.

19.3.1 Scheduler

In LLM inference, caching history key and value states is a common practice to prevent redundant computation. How-
ever, as history lengths vary in a batch of sequences, we need to pad the caches to enable batching inference. Unfortu-
nately, this padding can lead to significant memory wastage, limiting the transformer’s performance.

vLLM employs a paging-based strategy, allocating caches in page blocks to minimize extra memory usage. Our Sched-
uler module in the Engine shares a similar design, allocating resources based on sequence length in blocks and evicting
unused blocks to support larger batching and longer session lengths.

Additionally, we support S-LoRA, which enables the use of multiple LoRA adapters on limited memory.

58 Chapter 19. Architecture of lmdeploy.pytorch

https://docs.vllm.ai
https://github.com/S-LoRA/S-LoRA

lmdeploy Documentation, Release 0.4.1

19.3.2 ModelAgent

lmdeploy.pytorch supports Tensor Parallelism, which leads to complex model initialization, cache allocation, and
weight partitioning. ModelAgent is designed to abstract these complexities, allowing the Engine to focus solely on
maintaining the pipeline.

ModelAgent consists of two components:

1. `patched_model: : This is the transformer model after patching. In comparison to the original model, the
patched model incorporates additional features such as Tensor Parallelism, quantization, and high-performance
kernels.

2. cache_engine: This component manages the caches. It receives commands from the Scheduler and performs
host-device page swaps. Only GPU blocks are utilized for caching key/value pairs and adapters.

19.4 Patching

In order to facilitate the deployment of a new model, we have developed a tool to patch the modules.

For example, if we want to reimplement the forward method of LlamaAttention:

class CustomLlamaAttention(nn.Module):
def forward(self, ...):

custom forward

We register the implementation above into lmdeploy.pytorch.models.module_map:

MODULE_MAP.update({
'transformers.models.llama.modeling_llama.LlamaAttention':
'qualname.to.CustomLlamaAttention'})

ModelAgent would then load and patch LlamaAttention with CustomLlamaAttention while leaving everything
else unchanged. You can perform inference with the new implementation. For more detail about model patching, please
refer to support new model .

19.5 Features

lmdeploy.pytorch supports new features including:

• Continuous Batching: As the sequence length in a batch may vary, padding is often necessary for batching
inference. However, large padding can lead to additional memory usage and unnecessary computation. To
address this, we employ continuous batching, where all sequences are concatenated into a single long sequence
to avoid padding.

• Tensor Parallelism: The GPU memory usage of LLM might exceed the capacity of a single GPU. Tensor
parallelism is utilized to accommodate such models on multiple devices. Each device handles parts of the model
simultaneously, and the results are gathered to ensure correctness.

• S-LoRA: LoRA adapters can be used to train LLM on devices with limited memory. While it’s common practice
to merge adapters into the model weights before deployment, loading multiple adapters in this way can consume a
significant amount of memory. We support S-LoRA, where adapters are paged and swapped in when necessary.
Special kernels are developed to support inference with unmerged adapters, enabling the loading of various
adapters efficiently.

19.4. Patching 59

lmdeploy Documentation, Release 0.4.1

• Quantization: Model quantization involves performing computations with low precision. lmdeploy.pytorch
supports w8a8 quantization. For more details, refer to w8a8.

60 Chapter 19. Architecture of lmdeploy.pytorch

CHAPTER

TWENTY

HOW TO SUPPORT NEW MODEL IN LMDEPLOY.PYTORCH

lmdeploy.pytorch is designed to ease new model deployment and prototype verification. If you are willing to use our
engine, here is the tutorial.

20.1 Support New Model

Let’s begin with Llama.

Before delving into the details, it’s essential to acquaint ourselves with the input specifications of the model. In order
to accommodate new features within our engine, there are some deviations from the typical transformer inputs.

1. To circumvent the need for batch padding, continuous batching is employed. Consequently, the input_ids now
represents the concatenation of all input sequences in the batch, followed by a unsqueeze(0) operation to align
with the original input_ids dimension.

2. In an effort to optimize memory usage for the key/value cache, we implement paged attention. This transforms
the past_key_value into a substantial tensor with dimensions [num_blocks, block_size, num_heads,
head_dim]. Here, num_blocks denotes the number of page blocks, and block_size indicates the size of each
block.

3. Accompanying these changes, additional inputs are imperative to support the modified inputs described above.
These include the block table and history length. It’s important to note that these supplementary inputs are not
explicitly listed as arguments in the original forward method. Instead, a context object is utilized to furnish this
essential information.

Due to the alterations in the input structure mentioned earlier, the forward methods for both LlamaModel and
LlamaAttention modules need to be adjusted. Below are the modified implementations:

For LlamaModel:

lmdeploy/pytorch/models/llama.py

class LlamaModel(nn.Module):
def forward(

self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,

(continues on next page)

61

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:

"""Rewrite implementation of LlamaModel.forward."""
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds

decoder layers
for idx, decoder_layer in enumerate(self.layers):

past_key_value = past_key_values[idx]
layer_outputs = decoder_layer(

hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,

)
hidden_states = layer_outputs[0]

hidden_states = self.norm(hidden_states)

return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=None,
attentions=None,

)

For LlamaAttention:

lmdeploy/pytorch/models/llama.py
from lmdeploy.pytorch.kernels import apply_rotary_pos_emb, fill_kv_cache, paged_
→˓attention_fwd

class LlamaAttention(nn.Module):
def forward(

self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,

) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:

"""Rewrite of LlamaAttention.forward."""
context = self.context.context
history_lengths = context.history_lengths
position_ids_1d = context.position_ids_1d
block_offsets = context.block_offsets

qkv proj
query_states = q_proj(hidden_states)

(continues on next page)

62 Chapter 20. How to support new model in lmdeploy.pytorch

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

key_states = k_proj(hidden_states)
value_states = v_proj(hidden_states)
query_states = query_states.view(-1, num_heads, head_dim)
key_states = key_states.view(-1, num_kv_heads, head_dim)
value_states = value_states.view(-1, num_kv_heads, head_dim)

rotary embedding
max_seq_len = position_ids.size(-1)
kv_seq_len = max_seq_len + max(history_lengths)
if kv_seq_len >= self.rotary_emb.max_seq_len_cached:

cos, sin = self.rotary_emb(value_states,
seq_len=kv_seq_len + 128)

query_states, key_states = apply_rotary_pos_emb(
query_states,
key_states,
self.rotary_emb.cos_cached,
self.rotary_emb.sin_cached,
position_ids,
position_ids_1d,
q_embed=query_states,
k_embed=key_states)

fill kv cache
kv_seq_length = context.kv_seq_length
q_seq_length = context.q_seq_length
q_start_loc = context.q_start_loc
fill_kv_cache(key_states,

value_states,
past_key_value[0],
past_key_value[1],
q_start_loc,
q_seq_length,
block_offsets=block_offsets,
history_lengths=history_lengths,
context=context)

attention
attn_output = query_states
block_size = past_key_value[0].size(1)
paged_attention_fwd(

query_states,
past_key_value[0],
past_key_value[1],
attn_output,
block_offsets,
q_start_loc=q_start_loc,
q_seqlens=q_seq_length,
kv_seqlens=kv_seq_length,
max_seqlen=max_seq_len,

)
hidden_size = num_heads * head_dim
attn_output = attn_output.reshape(*hidden_states.shape[:-1], hidden_size)

(continues on next page)

20.1. Support New Model 63

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

o proj
attn_output = o_proj(attn_output)
return attn_output, None, past_key_value

Note: The additional arguments like history_lengths and block_offsets are accessed from the context object,
which acts as a container for the necessary inputs required by continuous batching and paged attention. Refer to the
context info for more detail about context object.

We have replaced certain operations with our custom Triton kernel for two reasons:

1. The custom Triton kernel allows us to incorporate new features, such as paged_attention_fwd.

2. Fused kernels offer superior performance compared to the pure PyTorch implementation.

Now that we have the updated implementations for the two modules, let’s register them in lmdeploy/pytorch/
models/module_map.py.

lmdeploy/pytorch/models/module_map.py
MODEL_MAP.update({

'transformers.models.llama.modeling_llama.LlamaAttention':
'lmdeploy.pytorch.models.llama.LlamaAttention',
'transformers.models.llama.modeling_llama.LlamaModel':
'lmdeploy.pytorch.models.llama.LlamaModel'

})

In this mapping, the revised modules are associated with their original counterparts. When creating an Engine, the
ModelAgent will automatically patch the model. Subsequently, we can conduct inference using these updated imple-
mentations.

20.2 Support Tensor Parallelism

If we aim to enable tensor parallelism (TP), it is necessary to partition the weights in the model. Let’s build upon the
previously mentioned modifications to accommodate TP in the Llama model:

In Llama (as well as in most Language Model models), the weight partition primarily affects the Linear layers. Specif-
ically, for the following components:

• In LlamaAttention: q_proj, k_proj, v_proj require column-wise partitioning, while o_proj necessitates
row-wise partitioning.

• In LlamaMLP: gate_proj and up_proj require column-wise partitioning, while down_proj requires row-wise
partitioning.

We can implement the _distribution_partition_fn in each of the rewritten modules:

lmdeploy/pytorch/models/llama.py
from ..dist_utils import (colwise_parallelize_linear_fn,

rowwise_parallelize_linear_fn)

class LlamaAttention(nn.Module):
@classmethod
def _distribute_partition_fn(cls, mod_name: str, mod: nn.Module,

device_mesh: DeviceMesh):
"""Distribution partition callback."""

(continues on next page)

64 Chapter 20. How to support new model in lmdeploy.pytorch

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

if mod_name in ['q_proj', 'k_proj', 'v_proj']:
colwise_parallelize_linear_fn(mod,

device_mesh=device_mesh,
to_local=True)

elif mod_name in ['o_proj']:
rowwise_parallelize_linear_fn(mod,

device_mesh=device_mesh,
to_local=True)

class LlamaMLP(nn.Module):
@classmethod
def _distribute_partition_fn(cls, mod_name: str, mod: nn.Module,

device_mesh: DeviceMesh):
"""Distribution partition callback."""
if mod_name in ['gate_proj', 'up_proj']:

colwise_parallelize_linear_fn(mod,
device_mesh=device_mesh,
to_local=True)

elif mod_name in ['down_proj']:
rowwise_parallelize_linear_fn(mod,

device_mesh=device_mesh,
to_local=True)

In the process of loading model weights, the _distribute_partition_fn is called to distribute the weights of spe-
cific modules across different devices. Following the weight partitioning, it becomes necessary to perform all_reduce
on the output tensors of o_proj and down_proj. While one option is to include all_reduce directly in the forward
method, an alternative approach is to introduce the _distribute_output_fn call:

lmdeploy/pytorch/models/llama.py
import torch.distributed as dist

class LlamaAttention(nn.Module):
@classmethod
def _distribute_output_fn(cls, outputs, device_mesh: DeviceMesh):

"""Distribution output hook."""
dist.all_reduce(outputs[0])
return outputs

class LlamaMLP(nn.Module):
@classmethod
def _distribute_output_fn(cls, outputs, device_mesh: DeviceMesh):

"""Distribution output hook."""
dist.all_reduce(outputs)
return outputs

It is essential to remember to add LlamaMLP to the module_map:

lmdeploy/pytorch/models/module_map.py
MODEL_MAP.update({

'transformers.models.llama.modeling_llama.LlamaMLP':
'lmdeploy.pytorch.models.llama.LlamaMLP'

})

20.2. Support Tensor Parallelism 65

lmdeploy Documentation, Release 0.4.1

With these adjustments, the model is now capable of utilizing multiple GPUs for deploying Large Language Models
(LLM). This enables efficient distribution of computations across different devices in a parallelized manner.

20.3 Debug Module

When the output of the model does not meet expectations, we would like to debug a specific module to determine if
the added rewrite is correct. lmdeploy.pytorch provides some tools to assist with accuracy alignment. Let’s take
LlamaAttention module as an example.

First, create an instance of the module that we want to debug:

import torch
from transformers import AutoModelForCausalLM

get module
model_path = 'meta-llama/Llama-2-7b-chat-hf'
dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(model_path).to(torch.float16).cuda()
self_attn = model.model.layers[0].self_attn

Extract the inputs/outputs with ModuleIOExtractor.

from lmdeploy.pytorch.tools.make_inputs import ModuleIOExtractor

extract module input/output
input_ids = torch.tensor([[1, 2, 3, 4, 5]]).cuda()
extractor = ModuleIOExtractor(model, self_attn)
attn_args, attn_kwargs, attn_output = extractor.extract(input_ids)

The inputs of rewrite module are different from the inputs of origin module:

1. Module requires some special inputs, which are passed through StepContext. We can create one with
make_step_context.

2. input_ids, hidden_states should be continuous. We can use continuous_tensor to do the process.

3. past_key_value should be paged to meet the demand of paged attention.

Based on the reason above, the input should be updated:

from lmdeploy.pytorch.tools.make_inputs import make_step_context
from lmdeploy.pytorch.tools.layout_convert import continuous_tensor

create patched input/output
context = make_step_context(input_ids,

kv_cache_dtype=dtype,
num_key_value_heads=32)

seq_length = context.q_seq_length
attn_kwargs['hidden_states'] = continuous_tensor(

attn_kwargs['hidden_states'],
seq_length)

attn_kwargs['past_key_value'] = context.kv_caches[0]

Then you can start the rewrite and compare the correctness of the results.

66 Chapter 20. How to support new model in lmdeploy.pytorch

lmdeploy Documentation, Release 0.4.1

from lmdeploy.pytorch.models import patch

patch and test
patched_self_attn = patch(self_attn, extra_args=['context'])
with torch.inference_mode():

patched_output = patched_self_attn.patched_forward(*attn_args,
**attn_kwargs,
context=context)

torch.testing.assert_close(patched_output[0],
continuous_tensor(attn_output[0], seq_length))

Adjust the rewrite module until the output can be aligned.

20.4 Appendix

20.4.1 context info

@dataclass
class StepContext:

"""context of Model.
"""
inputs: ModelInputs
block_offsets: torch.LongTensor
position_ids: torch.LongTensor
position_ids_1d: torch.LongTensor
q_start_loc: torch.LongTensor
history_lengths: torch.LongTensor
seq_length: torch.LongTensor
max_seq_length: int
kv_seq_length: torch.LongTensor
kv_caches: List
is_decoding: bool
world_size: int = 1
json_config: Dict = None
local_adapter_ids: torch.LongTensor = None
global_adapter_ids: torch.LongTensor = None
adapter_offsets: torch.LongTensor = None
max_rank: int = 0

20.4.2 FAQ

• How to invoke the original forward method?

A common approach is to add hooks to a method rather than performing a complete rewrite. To access the unpatched
module, you can utilize self.origin_mod within the rewritten method.

• How to register modules in remote code?

For modules located in remote code, pinpointing them via qualname might be challenging. lmdeploy.pytorch
facilitates registration using abbreviations for such modules:n:

20.4. Appendix 67

lmdeploy Documentation, Release 0.4.1

MODULE_MAP.update({
'modeling_internlm.InternLMAttention':
'lmdeploy.pytorch.models.internlm.PatchedInternLMAttention',

})

[!NOTE]

Although abbreviations are supported, they tend to have lower priority. It is advisable to register modules
using their complete qualname for more robust and accurate mapping.

• How to support different modules with the same name?

You can accommodate multiple modules with the same name within a single rewrite module by providing distinct
implementations based on their attributes. For instance, consider baichuan2 7b/13b:

class BaichuanModel(nn.Module):
def forward(self, ...):

if self.config.num_hidden_layers == 32:
return forward_7b(...)

else:
return forward_default(...)

• How to perform post-initialization for a rewrite module?

To execute tasks after model weight loading, introduce a _update_model_fn method in your rewrite module. This
method will be automatically called post-initialization:

class LlamaAttention:
def _update_model_fn(self):

ADD YOUR CODE HERE

Here, you can include any additional post-initialization steps or configurations needed for your specific use case.

68 Chapter 20. How to support new model in lmdeploy.pytorch

CHAPTER

TWENTYONE

CONTEXT LENGTH EXTRAPOLATION

Long text extrapolation refers to the ability of LLM to handle data longer than the training text during inference.
TurboMind engine now support LlamaDynamicNTKScalingRotaryEmbedding and the implementation is consistent
with huggingface.

21.1 Usage

You can enable the context length extrapolation abality by modifying the TurbomindEngineConfig. Edit the
session_len to the expected length and change rope_scaling_factor to a number no less than 1.0.

Here is an example:

from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig

backend_config = TurbomindEngineConfig(rope_scaling_factor=2.0, session_len=160000)
pipe = pipeline('internlm/internlm2-chat-7b', backend_config=backend_config)
prompt = 'Use a long prompt to replace this sentence'
gen_config = GenerationConfig(top_p=0.8,

top_k=40,
temperature=0.8,
max_new_tokens=1024)

response = pipe(prompt, gen_config=gen_config)
print(response)

21.2 Evaluation

We use several methods to evaluate the long-context-length inference ability of LMDeploy, including passkey retrieval,
needle in a haystack and computing perplexity

69

https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L178

lmdeploy Documentation, Release 0.4.1

21.2.1 Passkey Retrieval

You can try the following code to test how many times LMDeploy can retrieval the special key.

import numpy as np
from lmdeploy import pipeline
from lmdeploy import TurbomindEngineConfig

session_len = 160000
backend_config = TurbomindEngineConfig(rope_scaling_factor=2.0, session_len=session_len)
pipe = pipeline('internlm/internlm2-chat-7b', backend_config=backend_config)

def passkey_retrival(session_len, n_round=5):
create long context input
tok = pipe.tokenizer
task_description = 'There is an important info hidden inside a lot of irrelevant␣

→˓text. Find it and memorize them. I will quiz you about the important information there.
→˓'

garbage = 'The grass is green. The sky is blue. The sun is yellow. Here we go. There␣
→˓and back again.'

for _ in range(n_round):
n_times = (session_len - 1000) // len(tok.encode(garbage))
n_garbage_prefix = np.random.randint(0, n_times)
n_garbage_suffix = n_times - n_garbage_prefix
garbage_prefix = ' '.join([garbage] * n_garbage_prefix)
garbage_suffix = ' '.join([garbage] * n_garbage_suffix)
pass_key = np.random.randint(1, 50000)
information_line = f'The pass key is {pass_key}. Remember it. {pass_key} is the␣

→˓pass key.' # noqa: E501
final_question = 'What is the pass key? The pass key is'
lines = [

task_description,
garbage_prefix,
information_line,
garbage_suffix,
final_question,

]

inference
prompt = ' '.join(lines)
response = pipe([prompt])
print(pass_key, response)

passkey_retrival(session_len, 5)

70 Chapter 21. Context length extrapolation

lmdeploy Documentation, Release 0.4.1

21.2.2 Needle In A Haystack

OpenCompass offers very useful tools to perform needle-in-a-haystack evaluation. For specific instructions, please
refer to the guide.

21.2.3 Perplexity

The following codes demonstrate how to use LMDeploy to calculate perplexity.

from datasets import load_dataset
from lmdeploy import TurbomindEngineConfig
from lmdeploy.turbomind import TurboMind
import numpy as np

load model and tokenizer
engine_config = TurbomindEngineConfig(rope_scaling_factor=2.0, session_len=160000)
engine = TurboMind.from_pretrained('internlm/internlm2-chat-7b', engine_config)
tokenizer = engine.tokenizer
generator = engine.create_instance()

get perplexity
text = 'Use a long prompt to replace this sentence'
input_ids = tokenizer.encode(text)
loss = generator.get_ppl(input_ids)[0]
ppl = np.exp(loss)

21.2. Evaluation 71

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass/blob/main/docs/en/advanced_guides/needleinahaystack_eval.md

lmdeploy Documentation, Release 0.4.1

72 Chapter 21. Context length extrapolation

CHAPTER

TWENTYTWO

CUSTOMIZED CHAT TEMPLATE

The effect of the applied chat template can be observed by setting log level INFO.

LMDeploy supports two methods of adding chat templates:

• One approach is to utilize an existing conversation template by directly configuring a JSON file like the following.

{
"model_name": "your awesome chat template name",
"system": "<|im_start|>system\n",
"meta_instruction": "You are a robot developed by LMDeploy.",
"eosys": "<|im_end|>\n",
"user": "<|im_start|>user\n",
"eoh": "<|im_end|>\n",
"assistant": "<|im_start|>assistant\n",
"eoa": "<|im_end|>",
"separator": "\n",
"capability": "chat",
"stop_words": ["<|im_end|>"]

}

model_name is a required field and can be either the name of an LMDeploy built-in chat template (which can be
viewed through lmdeploy list), or a new name. Other fields are optional.

1. When model_name is the name of a built-in chat template, the non-null fields in the JSON file will override
the corresponding attributes of the original chat template.

2. However, when model_name is a new name, it will register BaseChatTemplate directly as a new chat
template. The specific definition can be referred to BaseChatTemplate.

The new chat template would be like this:

{system}{meta_instruction}{eosys}{user}{user_content}{eoh}{assistant}{assistant_
→˓content}{eoa}{separator}{user}...

When using the CLI tool, you can pass in a custom chat template with --chat-template, for example.

lmdeploy serve api_server internlm/internlm2-chat-7b --chat-template ${JSON_FILE}

You can also pass it in through the interface function, for example.

from lmdeploy import ChatTemplateConfig, serve
serve('internlm/internlm2-chat-7b',

chat_template_config=ChatTemplateConfig.from_json('${JSON_FILE}'))

73

https://github.com/InternLM/lmdeploy/blob/24bd4b9ab6a15b3952e62bcfc72eaba03bce9dcb/lmdeploy/model.py#L113-L188

lmdeploy Documentation, Release 0.4.1

• Another approach is to customize a Python chat template class like the existing LMDeploy chat templates. It
can be used directly after successful registration. The advantages are a high degree of customization and strong
controllability. Below is an example of registering an LMDeploy chat template.

from lmdeploy.model import MODELS, BaseChatTemplate

@MODELS.register_module(name='customized_model')
class CustomizedModel(BaseChatTemplate):

"""A customized chat template."""

def __init__(self,
system='<|im_start|>system\n',
meta_instruction='You are a robot developed by LMDeploy.',
user='<|im_start|>user\n',
assistant='<|im_start|>assistant\n',
eosys='<|im_end|>\n',
eoh='<|im_end|>\n',
eoa='<|im_end|>',
separator='\n',
stop_words=['<|im_end|>', '<|action_end|>']):

super().__init__(system=system,
meta_instruction=meta_instruction,
eosys=eosys,
user=user,
eoh=eoh,
assistant=assistant,
eoa=eoa,
separator=separator,
stop_words=stop_words)

from lmdeploy import ChatTemplateConfig, pipeline

messages = [{'role': 'user', 'content': 'who are you?'}]
pipe = pipeline('internlm/internlm2-chat-7b',

chat_template_config=ChatTemplateConfig('customized_model'))
for response in pipe.stream_infer(messages):

print(response.text, end='')

In this example, we register a LMDeploy chat template that sets the model to be created by LMDeploy, so when
the user asks who the model is, the model will answer that it was created by LMDeploy.

74 Chapter 22. Customized chat template

CHAPTER

TWENTYTHREE

HOW TO DEBUG TURBOMIND

Turbomind is implemented in C++, which is not as easy to debug as Python. This document provides basic methods
for debugging Turbomind.

23.1 Prerequisite

First, complete the local compilation according to the commands in Build in localhost.

23.2 Configure Python debug environment

Since many large companies currently use Centos 7 for online production environments, we will use Centos 7 as an
example to illustrate the process.

23.2.1 Obtain glibc and python3 versions

rpm -qa | grep glibc
rpm -qa | grep python3

The result should be similar to this:

[username@hostname workdir]# rpm -qa | grep glibc
glibc-2.17-325.el7_9.x86_64
glibc-common-2.17-325.el7_9.x86_64
glibc-headers-2.17-325.el7_9.x86_64
glibc-devel-2.17-325.el7_9.x86_64

[username@hostname workdir]# rpm -qa | grep python3
python3-pip-9.0.3-8.el7.noarch
python3-rpm-macros-3-34.el7.noarch
python3-rpm-generators-6-2.el7.noarch
python3-setuptools-39.2.0-10.el7.noarch
python3-3.6.8-21.el7_9.x86_64
python3-devel-3.6.8-21.el7_9.x86_64
python3.6.4-sre-1.el6.x86_64

Based on the information above, we can see that the version of glibc is 2.17-325.el7_9.x86_64 and the version
of python3 is 3.6.8-21.el7_9.x86_64.

75

lmdeploy Documentation, Release 0.4.1

23.2.2 Download and install debuginfo library

Download glibc-debuginfo-common-2.17-325.el7.x86_64.rpm, glibc-debuginfo-2.17-325.el7.
x86_64.rpm, and python3-debuginfo-3.6.8-21.el7.x86_64.rpm from http://debuginfo.centos.org/7/x86_64.

rpm -ivh glibc-debuginfo-common-2.17-325.el7.x86_64.rpm
rpm -ivh glibc-debuginfo-2.17-325.el7.x86_64.rpm
rpm -ivh python3-debuginfo-3.6.8-21.el7.x86_64.rpm

23.2.3 Upgrade GDB

sudo yum install devtoolset-10 -y
echo "source scl_source enable devtoolset-10" >> ~/.bashrc
source ~/.bashrc

23.2.4 Verification

gdb python3

The output should be similar to this:

[username@hostname workdir]# gdb python3
GNU gdb (GDB) Red Hat Enterprise Linux 9.2-10.el7
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from python3...
(gdb)

If it shows Reading symbols from python3, the configuration has been successful.

For other operating systems, please refer to DebuggingWithGdb.

76 Chapter 23. How to debug Turbomind

https://wiki.python.org/moin/DebuggingWithGdb

lmdeploy Documentation, Release 0.4.1

23.3 Set up symbolic links

After setting up symbolic links, there is no need to install it locally with pip every time.

Change directory to lmdeploy, e.g.
cd /workdir/lmdeploy

Since it has been built in the build directory
Link the lib directory
cd lmdeploy && ln -s ../build/lib . && cd ..
(Optional) Link compile_commands.json for clangd index
ln -s build/compile_commands.json .

23.4 Start debugging

Use gdb to start the API server with Llama-2-13b-chat-hf, e.g.
gdb --args python3 -m lmdeploy serve api_server /workdir/Llama-2-13b-chat-hf

Set directories in gdb
Reading symbols from python3...
(gdb) set directories /workdir/lmdeploy

Set a breakpoint using the relative path, e.g.
(gdb) b src/turbomind/models/llama/BlockManager.cc:104

When it shows
```
No source file named src/turbomind/models/llama/BlockManager.cc.
Make breakpoint pending on future shared library load? (y or [n])
```
Just type `y` and press enter

Run
(gdb) r

(Optional) Use https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_
→˓restful_api.py to send a request

python3 profile_restful_api.py --server_addr 127.0.0.1:23333 --tokenizer_path /workdir/
→˓Llama-2-13b-chat-hf --dataset /workdir/ShareGPT_V3_unfiltered_cleaned_split.json --
→˓concurrency 1 --num_prompts 1

23.3. Set up symbolic links 77

lmdeploy Documentation, Release 0.4.1

23.5 Using GDB

Refer to GDB Execution Commands and happy debugging.

78 Chapter 23. How to debug Turbomind

https://lldb.llvm.org/use/map.html

CHAPTER

TWENTYFOUR

LMDEPLOY-QOS INTRODUCE AND USAGE

24.1 Background

With the rise of Large Language Model (LLM) and Artificial General Intelligence (AGI), numerous inference frame-
works have emerged. These frameworks deliver scalable and high-performance services by serving online workloads
with language models. However, these workloads often come from multiple user groups, exhibiting rapid changes
in workload patterns within short periods. Many inference frameworks struggle to meet the demands of such multi-
tenancy traffic patterns and fail to effectively shape user behaviors. Therefore, we believe that systematically considering
these issues in LLM inference framework is both valuable and necessary.

24.2 User Categorizations for Multi-tenancy Handling

LMDeploy-QoS is part of LMDeploy, offering a range of multi-tenancy functionalities. It requires users to tag their
inference requests with appropriate user identifications (user_id in configuration or codebase). The system operates
based on a dictionary-like configuration that serves as a multi-tenancy policy. In this configuration, users are mapped
to different classes, known as “user groups”, each configured with a ratio value. Our multi-tenancy strategy reads this
configuration and schedules user inference requests according to class priority and the difference between the predefined
ratio and real-time allocation ratio. Extensive testing shows that LMDeploy-QoS significantly enhances LLM serving
reliability and GPU resource utilization for real-world large language model inference workloads.

We categorize LMDeploy users into four groups:

• Platinum

• Gold

• Silver

• Bronze

Based on our experiences in delivering LLM services, we can map the following four types of users to these user
groups:

• Platinum: VIP or administrative users. Examples include service inspectors or product demo presenters who
require uninterrupted online services. Their workloads are typically at a low frequency and require limited
resources.

• Gold: Contracted business user groups requiring specific quantities of reliable services. For instance, Company
A signs a contract with the LLM service provider to secure X requests/sec service capability with Z% availability
for its employees at the cost of Y million dollars per year.

• Silver: The vast majority of users fall under this category. Most trial or monthly subscribed users are included
in this group. They need a relatively small quantity of services, but their user experiences significantly affect the
LLM service reputation.

79

lmdeploy Documentation, Release 0.4.1

• Bronze: Heavy users who pay minimal fees to LLM providers.

The above user group categorization is intended for guidance rather than as a recommendation for all LMDeploy users,
as it may not be suitable for all LLM service providers. Users can develop their own method of categorizing users
based on their observations of daily workloads.

Next, we will discuss how LMDeploy schedules requests based on these categorizations.

24.3 Multi-tenancy Strategies

24.3.1 Strategy 1: prioritized scheduling between groups

This strategy works as simple as its title suggests.

User groups are introduced for this strategy, with users in each group to be specified. Recommended user groups are
as follows:

• Platinum

• Gold

• Silver

• Bronze

The priority of each group decreases sequentially. Requests with higher priority are always given precedence for
inference. Be noted that the scheduling is performed at the time of request reception, so lower-priority requests will
not be withdrawn from the GPU if they are already under inference.

The below diagram shows how the prioritization works. As you can see, the platinum request is reprioritized and moved
to the queue head.

80 Chapter 24. LMDeploy-QoS Introduce and Usage

lmdeploy Documentation, Release 0.4.1

24.3. Multi-tenancy Strategies 81

lmdeploy Documentation, Release 0.4.1

24.3.2 Strategy 2: proportionally rated scheduling with a pre-defined ratio within
user group

This strategy works only within the user group. We introduce a within-group user quota configuration table. This
table defines users’ “ideal share ratio” with a sum value of 100% GPU resource. Each “user” appears in the list as a
user_id, and a user can only belong to one user group. Requests from different users will be scheduled according to
each user’s “ideal share ratio”. To be specific, users with their real-time usage ratio lower than their quota ratio will have
priority over users whose real-time usage ratio is higher than their quota ratio. It is worth noting that the scheduling
only considers users in the request queue, ignoring any absent users from the configuration table.

The below diagram shows a typical example of how this strategy works.

82 Chapter 24. LMDeploy-QoS Introduce and Usage

lmdeploy Documentation, Release 0.4.1

24.3.3 Strategy 3: a combination strategy of 1 and 2

We can call it a hybrid strategy. The way we hybrid these 2 strategies is fairly simple: we adopt strategy 1 in between
user groups, and adopt strategy 2 within a user group. So users belonging to different groups with different priorities
will only obey strategy 1 to determine their privilege in resource allocation. That is, when both strategies are applied,
the first strategy will overpower the second. When it comes to a situation that no cross-group requests are waiting for
serving, the within-group strategy 2 comes into play.

Below is a diagram showing it.

To be noted, there could be other ways of hybrid strategies 1 & 2, and this doc only introduces one method that works
well in our scenario. Considering that prioritization and pro-rated sharing are obviously conflicting strategies, there is
no easy way to mix them to work within a single dimension.

24.4 A Sample QoS Configuration

The configuration will be specified by the --qos-config-path flag, and will be loaded by program upon startup.

{
"enable_user_qos": true,
"user_groups": [

"Platinum",
"Gold",
"Silver",
"Bronze"

],
"user_group_map": {

"Platinum": [
{

"id": "user_id0",
(continues on next page)

24.4. A Sample QoS Configuration 83

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

"quota_pct": 100
},
{

"id": "default",
"quota_pct": 0

}
],
"Gold": [

{
"id": "user_id1",
"quota_pct": 50

},
{

"id": "user_id2",
"quota_pct": 50

}
],
"Silver": [

{
"id": "user_id3",
"quota_pct": 5

},
{

"id": "default",
"quota_pct": 95

}
],
"Bronze": [

{
"id": "user_id4",
"quota_pct": 30

},
{

"id": "user_id5",
"quota_pct": 30

},
{

"id": "user_id6",
"quota_pct": 40

},
{

"id": "default",
"quota_pct": 0

}
]

}
}

84 Chapter 24. LMDeploy-QoS Introduce and Usage

lmdeploy Documentation, Release 0.4.1

24.5 How to perform inference job with Lmdeploy-QoS aware

We provide the code link below to show how to call infer requests with multi-tenancy strategy awarded. What the qos
related argument appears as in http body

/v1/chat/interactive_qos

curl -X POST http://localhost/v1/chat/interactive_qos \
-H "Content-Type: application/json" \
-d '{
"prompt": "Hello,Hello",
"session_id": -1,
"interactive_mode": false,
"stream": false,
"stop": false,
"request_output_len": 512,
"top_p": 0.8,
"top_k": 40,
"temperature": 0.8,
"repetition_penalty": 1,
"ignore_eos": false,
"user_id": "user_id0"

}'

/v1/chat/completions_qos

curl -X POST http://localhost/v1/chat/completions_qos \
-H "Content-Type: application/json" \
-d '{
"model": "internlm-chat-7b",
"messages": "Hello,Hello",
"temperature": 0.7,
"top_p": 1,
"n": 1,
"max_tokens": 512,
"stop": false,
"stream": false,
"presence_penalty": 0,
"frequency_penalty": 0,
"repetition_penalty": 1,
"session_id": -1,
"ignore_eos": false,
"user_id": "user_id0"

}'

/v1/completions_qos

curl -X POST http://localhost/v1/completions_qos \
-H "Content-Type: application/json" \
-d '{
"model": "internlm-chat-7b",
"prompt": "Hello,Hello",
"suffix": "string",
"temperature": 0.7,

(continues on next page)

24.5. How to perform inference job with Lmdeploy-QoS aware 85

lmdeploy Documentation, Release 0.4.1

(continued from previous page)

"n": 1,
"max_tokens": 16,
"stop": "string",
"stream": false,
"top_p": 1,
"repetition_penalty": 1,
"session_id": -1,
"ignore_eos": false,
"user_id": "user_id0"

}'

24.6 File Configuration Modification

The template of the configuration file is located at: lmdeploy/server/qos_engine/qos_config.json.template.
Add the necessary users based on actual requirements, ensure correct priority assignment, and set appropriate quota
values.

24.7 Passing Configuration Parameters

Upon starting the api_server, pass the configuration file and its path using the --qos-config-path flag. An example
is illustrated below:

CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server internlm/internlm-chat-7b --server-port␣
→˓8000 --qos-config-path lmdeploy/serve/qos_engine/qos_config.json.template

24.8 Contributor

Eric, sallyjunjun, sfireworks, Dofgal, shadow

86 Chapter 24. LMDeploy-QoS Introduce and Usage

https://github.com/rhinouser0
https://github.com/sallyjunjun
https://github.com/sfireworks
https://github.com/Dofgal
https://github.com/awslshadowstar

CHAPTER

TWENTYFIVE

INFERENCE PIPELINE

25.1 pipeline

lmdeploy.pipeline(model_path: str, model_name: Optional[str] = None, backend_config:
Optional[Union[lmdeploy.messages.TurbomindEngineConfig,
lmdeploy.messages.PytorchEngineConfig]] = None, chat_template_config:
Optional[lmdeploy.model.ChatTemplateConfig] = None, log_level='ERROR', **kwargs)

Parameters

• model_path (str) – the path of a model. It could be one of the following options:

– i) A local directory path of a turbomind model which is

converted by lmdeploy convert command or download from ii) and iii).

– ii) The model_id of a lmdeploy-quantized model hosted

inside a model repo on huggingface.co, such as “InternLM/internlm-chat-20b-4bit”,
“lmdeploy/llama2-chat-70b-4bit”, etc.

–iii) The model_id of a model hosted inside a model repo

on huggingface.co, such as “internlm/internlm-chat-7b”, “Qwen/Qwen-7B-Chat “,
“baichuan-inc/Baichuan2-7B-Chat” and so on.

• model_name (str) – needed when model_path is a pytorch model on huggingface.co,
such as “internlm/internlm-chat-7b”, “Qwen/Qwen-7B-Chat “, “baichuan-inc/Baichuan2-
7B-Chat” and so on.

• backend_config (TurbomindEngineConfig | PytorchEngineConfig) – backend
config instance. Default to None.

• chat_template_config (ChatTemplateConfig) – chat template configuration. Default
to None.

• log_level (str) – set log level whose value among [CRITICAL, ERROR, WARNING,
INFO, DEBUG]

87

lmdeploy Documentation, Release 0.4.1

Examples

>>> # LLM
>>> import lmdeploy
>>> pipe = lmdeploy.pipeline('internlm/internlm-chat-7b')
>>> response = pipe(['hi','say this is a test'])
>>> print(response)
>>>
>>> # VLM
>>> from lmdeploy.vl import load_image
>>> from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
>>> pipe = pipeline('liuhaotian/llava-v1.5-7b',
... backend_config=TurbomindEngineConfig(session_len=8192),
... chat_template_config=ChatTemplateConfig(model_name='vicuna'))
>>> im = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/
→˓demo/resources/human-pose.jpg')
>>> response = pipe([('describe this image', [im])])
>>> print(response)

25.2 serving

lmdeploy.serve(model_path: str, model_name: Optional[str] = None, backend: Literal[turbomind, pytorch] =
'turbomind', backend_config: Optional[Union[lmdeploy.messages.TurbomindEngineConfig,
lmdeploy.messages.PytorchEngineConfig]] = None, chat_template_config:
Optional[lmdeploy.model.ChatTemplateConfig] = None, server_name: str = '0.0.0.0',
server_port: int = 23333, log_level: str = 'ERROR', api_keys: Optional[Union[str, List[str]]] =
None, ssl: bool = False, **kwargs)

This will run the api_server in a subprocess.

Parameters

• model_path (str) – the path of a model. It could be one of the following options:

– i) A local directory path of a turbomind model which is

converted by lmdeploy convert command or download from ii) and iii).

– ii) The model_id of a lmdeploy-quantized model hosted

inside a model repo on huggingface.co, such as “InternLM/internlm-chat-20b-4bit”,
“lmdeploy/llama2-chat-70b-4bit”, etc.

–iii) The model_id of a model hosted inside a model repo

on huggingface.co, such as “internlm/internlm-chat-7b”, “Qwen/Qwen-7B-Chat “,
“baichuan-inc/Baichuan2-7B-Chat” and so on.

• model_name (str) – needed when model_path is a pytorch model on huggingface.co,
such as “internlm/internlm-chat-7b”, “Qwen/Qwen-7B-Chat “, “baichuan-inc/Baichuan2-
7B-Chat” and so on.

• backend (str) – either turbomind or pytorch backend. Default to turbomind backend.

88 Chapter 25. inference pipeline

lmdeploy Documentation, Release 0.4.1

• backend_config (TurbomindEngineConfig | PytorchEngineConfig) – backend
config instance. Default to none.

• chat_template_config (ChatTemplateConfig) – chat template configuration. Default
to None.

• server_name (str) – host ip for serving

• server_port (int) – server port

• log_level (str) – set log level whose value among [CRITICAL, ERROR, WARNING,
INFO, DEBUG]

• api_keys (List[str] | str | None) – Optional list of API keys. Accepts string type
as a single api_key. Default to None, which means no api key applied.

• ssl (bool) – Enable SSL. Requires OS Environment variables ‘SSL_KEYFILE’ and
‘SSL_CERTFILE’.

Returns A client chatbot for LLaMA series models.

Return type APIClient

Examples

>>> import lmdeploy
>>> client = lmdeploy.serve('internlm/internlm-chat-7b', 'internlm-chat-7b')
>>> for output in client.chat('hi', 1):
... print(output)

lmdeploy.client(api_server_url: str = 'http://0.0.0.0:23333', api_key: Optional[str] = None, **kwargs)

Parameters

• api_server_url (str) – communicating address ‘http://<ip>:<port>’ of api_server

• api_key (str | None) – api key. Default to None, which means no api key will be used.

Returns Chatbot for LLaMA series models with turbomind as inference engine.

25.3 PytorchEngineConfig

class lmdeploy.PytorchEngineConfig(model_name: str = '', tp: int = 1, session_len: Optional[int] = None,
max_batch_size: int = 128, cache_max_entry_count: float = 0.8,
eviction_type: str = 'recompute', prefill_interval: int = 16, block_size:
int = 64, num_cpu_blocks: int = 0, num_gpu_blocks: int = 0, adapters:
Optional[Dict[str, str]] = None, max_prefill_token_num: int = 4096,
thread_safe: bool = False, enable_prefix_caching: bool = False,
download_dir: Optional[str] = None, revision: Optional[str] = None)

PyTorch Engine Config.

Parameters

• model_name (str) – name of the given model.

• tp (int) – Tensor Parallelism. default 1.

• session_len (int) – Max session length. Default None.

25.3. PytorchEngineConfig 89

http:/

lmdeploy Documentation, Release 0.4.1

• max_batch_size (int) – Max batch size. Default 128.

• cache_max_entry_count (float) – the percentage of gpu memory occupied by the k/v
cache. For lmdeploy versions greater than v0.2.1, it defaults to 0.8, signifying the percentage
of FREE GPU memory to be reserved for the k/v cache

• eviction_type (str) – What action to perform when kv cache is full, [‘recompute’,
‘copy’], Default ‘recompute’.

• prefill_interval (int) – Interval to perform prefill, Default 16.

• block_size (int) – paging cache block size, default 64.

• num_cpu_blocks (int) – Num cpu blocks. If num is 0, cache would be allocate according
to current environment.

• num_gpu_blocks (int) – Num gpu blocks. If num is 0, cache would be allocate according
to current environment.

• adapters (dict) – The path configs to lora adapters.

• max_prefill_token_num (int) – tokens per iteration.

• thread_safe (bool) – thread safe engine instance.

• enable_prefix_caching (bool) – Enable token match and sharing caches.

• download_dir (str) – Directory to download and load the weights, default to the default
cache directory of huggingface.

• revision (str) – The specific model version to use. It can be a branch name, a tag name,
or a commit id. If unspecified, will use the default version.

25.4 TurbomindEngineConfig

class lmdeploy.TurbomindEngineConfig(model_name: Optional[str] = None, model_format: Optional[str] =
None, tp: int = 1, session_len: Optional[int] = None,
max_batch_size: int = 128, cache_max_entry_count: float = 0.8,
cache_block_seq_len: int = 64, enable_prefix_caching: bool =
False, quant_policy: int = 0, rope_scaling_factor: float = 0.0,
use_logn_attn: bool = False, download_dir: Optional[str] = None,
revision: Optional[str] = None, max_prefill_token_num: int = 8192,
num_tokens_per_iter: int = 0, max_prefill_iters: int = 1)

TurboMind Engine config.

Parameters

• model_name (str) – the name of the deployed model, deprecated and has no effect when
version > 0.2.1

• model_format (str) – the layout of the deployed model. It can be one of the following
values [hf, llama, awq], hf meaning hf_llama, llama meaning meta_llama, awq meaning the
quantized model by AWQ.

• tp (int) – the number of GPU cards used in tensor parallelism, default to 1

• session_len (int) – the max session length of a sequence, default to None

• max_batch_size (int) – the max batch size during inference, default to 128

90 Chapter 25. inference pipeline

lmdeploy Documentation, Release 0.4.1

• cache_max_entry_count (float) – the percentage of gpu memory occupied by the k/v
cache. For versions of lmdeploy between v0.2.0 and v0.2.1, it defaults to 0.5, depicting the
percentage of TOTAL GPU memory to be allocated to the k/v cache. For lmdeploy versions
greater than v0.2.1, it defaults to 0.8, signifying the percentage of FREE GPU memory to be
reserved for the k/v cache

• cache_block_seq_len (int) – the length of the token sequence in a k/v block, default to
64

• enable_prefix_caching (bool) – enable cache prompts for block reuse, default to False

• quant_policy (int) – default to 0. When k/v is quantized into 8 bit, set it to 4

• rope_scaling_factor (int) – scaling factor used for dynamic ntk, default to 0. Turbo-
Mind follows the implementation of transformer LlamaAttention

• use_logn_attn (bool) – whether or not to use log attn: default to False

• download_dir (str) – Directory to download and load the weights, default to the default
cache directory of huggingface.

• revision (str) – The specific model version to use. It can be a branch name, a tag name,
or a commit id. If unspecified, will use the default version.

• max_prefill_token_num (int) – the number of tokens each iteration during prefill, de-
fault to 8192

• num_tokens_per_iter (int) – the number of tokens processed in each forward pass.
Working with max_prefill_iters enables “Dynamic SplitFuse”-like scheduling

• max_prefill_iters (int) – the max number of forward pass during prefill stage

25.5 GenerationConfig

class lmdeploy.GenerationConfig(n: int = 1, max_new_tokens: int = 512, top_p: float = 1.0, top_k: int = 1,
temperature: float = 0.8, repetition_penalty: float = 1.0, ignore_eos: bool
= False, random_seed: Optional[int] = None, stop_words:
Optional[List[str]] = None, bad_words: Optional[List[str]] = None,
min_new_tokens: Optional[int] = None, skip_special_tokens: bool = True,
logprobs: Optional[int] = None)

generation parameters used by inference engines.

Parameters

• n (int) – Define how many chat completion choices to generate for each input message

• max_new_tokens (int) – The maximum number of tokens that can be generated in the chat
completion

• top_p (float) – An alternative to sampling with temperature, called nucleus sampling,
where the model considers the results of the tokens with top_p probability mass

• top_k (int) – An alternative to sampling with temperature, where the model considers the
top_k tokens with the highest probability

• temperature (float) – Sampling temperature

• repetition_penalty (float) – Penalty to prevent the model from generating repeated
words or phrases. A value larger than 1 discourages repetition

• ignore_eos (bool) – Indicator to ignore the eos_token_id or not

25.5. GenerationConfig 91

lmdeploy Documentation, Release 0.4.1

• random_seed (int) – Seed used when sampling a token

• stop_words (List[str]) – Words that stop generating further tokens

• bad_words (List[str]) – Words that the engine will never generate

• min_new_tokens (int) – The minimum numbers of tokens to generate, ignoring the num-
ber of tokens in the prompt.

• skip_special_tokens (bool) – Whether or not to remove special tokens in the decoding.
Default to be True.

• logprobs (int) – Number of log probabilities to return per output token.

25.6 ChatTemplateConfig

class lmdeploy.ChatTemplateConfig(model_name: str, system: Optional[str] = None, meta_instruction:
Optional[str] = None, eosys: Optional[str] = None, user: Optional[str]
= None, eoh: Optional[str] = None, assistant: Optional[str] = None,
eoa: Optional[str] = None, separator: Optional[str] = None, capability:
Optional[Literal[completion, infilling, chat, python]] = None,
stop_words: Optional[List[str]] = None)

Parameters for chat template.

Parameters

• model_name (str) – the name of the deployed model. Determine which chat template will
be applied. All the chat template names: lmdeploy list

• system (str | None) – begin of the system prompt

• meta_instruction (str | None) – system prompt

• eosys (str | None) – end of the system prompt

• user (str | None) – begin of the user prompt

• eoh (str | None) – end of the user prompt

• assistant (str | None) – begin of the assistant prompt

• eoa (str | None) – end of the assistant prompt

• capability – (‘completion’ | ‘infilling’ | ‘chat’ | ‘python’) = None

92 Chapter 25. inference pipeline

CHAPTER

TWENTYSIX

INDICES AND TABLES

• genindex

• search

93

lmdeploy Documentation, Release 0.4.1

94 Chapter 26. Indices and tables

INDEX

C
ChatTemplateConfig (class in lmdeploy), 92
client() (in module lmdeploy), 89

G
GenerationConfig (class in lmdeploy), 91

P
pipeline() (in module lmdeploy), 87
PytorchEngineConfig (class in lmdeploy), 89

S
serve() (in module lmdeploy), 88

T
TurbomindEngineConfig (class in lmdeploy), 90

95

	Get Started
	Installation
	Offline batch inference
	Serving
	Quantization
	Useful Tools
	Inference with Command line Interface
	Serving with Web UI

	Build from source
	Build in Docker (recommended)
	Build in localhost (optional)

	Profile Token Latency and Throughput
	Metrics
	Profile
	Profile turbomind engine
	Profile pytorch engine

	Profile Request Throughput
	Metrics
	Profile
	Profile turbomind engine
	Profile pytorch engine

	Profile API Server
	Metrics
	Profile
	Launch api_server
	Profile

	Profile Triton Inference Server
	Metrics
	Profile
	Launch triton inference server
	Profile

	Evaluate LLMs with OpenCompass
	Setup
	Install lmdeploy
	Install OpenCompass
	Download datasets

	Prepare Evaluation Config
	Dataset Config
	Model Config

	Execute Evaluation Task

	Supported Models
	Models supported by TurboMind
	Models supported by PyTorch

	LLM Offline Inference Pipeline
	Usage
	FAQs

	VLM Offline Inference Pipeline
	A ‘Hello, world’ example
	Set tensor parallelism
	Set context window size
	Set sampling parameters
	Set chat template

	Multi-images inference
	Batch prompts inference
	Multi-turn conversation

	Serving LLM with OpenAI Compatible Server
	Launch Service
	Option 1: Launching with lmdeploy CLI
	Option 2: Deploying with docker
	Option 3: Deploying to Kubernetes cluster

	RESTful API
	Integrate with OpenAI
	Integrate with lmdeploy APIClient
	Integrate with Java/Golang/Rust
	Integrate with cURL

	Integrate with WebUI
	Option 1: gradio
	Option 2: OpenAOE

	FAQ

	Serving VLM with OpenAI Compatible Server
	Launch Service
	Option 1: Launching with lmdeploy CLI
	Option 2: Deploying with docker

	RESTful API
	Integrate with OpenAI
	Integrate with lmdeploy APIClient
	Integrate with Java/Golang/Rust

	Serving with Gradio
	Create a huggingface demo
	Step 1: Create space
	Step 2: Develop demo’s entrypoint app.py

	FAQs

	Request Distributor Server
	Startup
	API
	Dispatch Strategy

	W4A16 Quantization
	Quantization
	Evaluation
	Inference
	Service
	Performance

	Key-Value(KV) Cache Quantization
	Usage
	Offline inference
	Serving

	Evaluation
	Performance

	W8A8 LLM Model Deployment
	8-bit Weight Model Inference
	Launching gradio service
	Inference Speed
	8bit Weight Quantization

	Architecture of TurboMind
	High level overview of TurboMind
	Persistent Batch
	KV Cache Manager
	LLaMa implementation
	API
	Difference between FasterTransformer and TurboMind
	FAQ
	Supporting Huggingface models

	Architecture of lmdeploy.pytorch
	Design
	API
	Engine
	Scheduler
	ModelAgent

	Patching
	Features

	How to support new model in lmdeploy.pytorch
	Support New Model
	Support Tensor Parallelism
	Debug Module
	Appendix
	context info
	FAQ

	Context length extrapolation
	Usage
	Evaluation
	Passkey Retrieval
	Needle In A Haystack
	Perplexity

	Customized chat template
	How to debug Turbomind
	Prerequisite
	Configure Python debug environment
	Obtain glibc and python3 versions
	Download and install debuginfo library
	Upgrade GDB
	Verification

	Set up symbolic links
	Start debugging
	Using GDB

	LMDeploy-QoS Introduce and Usage
	Background
	User Categorizations for Multi-tenancy Handling
	Multi-tenancy Strategies
	Strategy 1: prioritized scheduling between groups
	Strategy 2: proportionally rated scheduling with a pre-defined ratio within user group
	Strategy 3: a combination strategy of 1 and 2

	A Sample QoS Configuration
	How to perform inference job with Lmdeploy-QoS aware
	File Configuration Modification
	Passing Configuration Parameters
	Contributor

	inference pipeline
	pipeline
	serving
	PytorchEngineConfig
	TurbomindEngineConfig
	GenerationConfig
	ChatTemplateConfig

	Indices and tables
	Index

